QM-AM-GM-HM inequalities

In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that are positive real numbers. Then

[1]

These inequalities often appear in mathematical competitions and have applications in many fields of science.

Proof

There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.

AM-QM inequality

From the Cauchy–Schwarz inequality on real numbers, setting one vector to (1, 1, ...):

hence . For positive the square root of this gives the inequality.

HM-GM inequality

The reciprocal of the harmonic mean is the arithmetic mean of the reciprocals , and it exceeds by the AM-GM inequality. implies the inequality:

[2]

The n = 2 case

The semi-circle used to visualize the inequalities

When n = 2, the inequalities become

for all [3]

which can be visualized in a semi-circle whose diameter is [AB] and center D.

Suppose AC = x1 and BC = x2. Construct perpendiculars to [AB] at D and C respectively. Join [CE] and [DF] and further construct a perpendicular [CG] to [DF] at G. Then the length of GF can be calculated to be the harmonic mean, CF to be the geometric mean, DE to be the arithmetic mean, and CE to be the quadratic mean. The inequalities then follow easily by the Pythagorean theorem.

Comparison of harmonic, geometric, arithmetic, quadratic and other mean values of two positive real numbers and

Tests

To infer the correct order, the four expressions can be evaluated with two positive numbers.

For and in particular, this results in .

See also

References

  1. ^ Djukić, Dušan (2011). The IMO compendium: a collection of problems suggested for the International Mathematical Olympiads, 1959-2009. Problem books in mathematics. International mathematical olympiad. New York: Springer. p. 7. ISBN 978-1-4419-9854-5.
  2. ^ Sedrakyan, Hayk; Sedrakyan, Nairi (2018), Sedrakyan, Hayk; Sedrakyan, Nairi (eds.), "The HM-GM-AM-QM Inequalities", Algebraic Inequalities, Problem Books in Mathematics, Cham: Springer International Publishing, p. 23, doi:10.1007/978-3-319-77836-5_3, ISBN 978-3-319-77836-5, retrieved 2023-11-26
  3. ^ Sedrakyan, Hayk; Sedrakyan, Nairi (2018), Sedrakyan, Hayk; Sedrakyan, Nairi (eds.), "The HM-GM-AM-QM Inequalities", Algebraic Inequalities, Problem Books in Mathematics, Cham: Springer International Publishing, p. 21, doi:10.1007/978-3-319-77836-5_3, ISBN 978-3-319-77836-5, retrieved 2023-11-26

Read other articles:

Lambang gerakan wanita mengemudi Gerakan wanita mengemudi (Arab: قيادة المرأة في السعوديةcode: ar is deprecated qiyāda al-imarʾa fī as-Suʿūdiyya) adalah sebuah kampanye oleh wanita Arab Saudi, yang memperjuangkan hak lebih untuk mengendarai kendaraan bermotor di jalan-jalan raya. Sampai Juni 2018, Arab Saudi menjadi satu-satunya negara di dunia dimana wanita dilarang mengendarai kendaraan-kendaraan bermotor.[1] Puluhan wanita yang berkendara di Riyadh pada 19...

 

Avianca memiliki beberapa anak perusahaan yang tersebar di Amerika Selatan dan Tengah. Anak perusahaan Avianca memiliki 81% saham AeroGal. Avianca adalah maskapai penerbangan Kolombia yang berbasis di Bandar Udara Internasional El Dorado di Bogotá. Tampa Cargo adalah maskapai penerbangan kargo Kolombia yang berbasis di Bandar Udara Internasional El Dorado di Bogotá. Helicol adalah maskapai penerbangan charter Kolombia yang berbasis di Bandar Udara Internasional El Dorado di Bogotá. PAS ada...

 

Sebuah sorotan keluku dari berbagai gambar Keluku[1] (Inggris: Thumbnail) adalah versi gambar atau video dengan ukuran yang dikurangi, yang dipakai untuk membantu menatakannya, memberikannya peran yang sama terhadap gambar seperti halnya indeks teks normal untuk kata-kata. Pada zaman gambar digital, mesin pencarian visual dan program penataan gambar biasanya memakai keluku, seperti halnya pada sebagian besar sistem operasi modern atau lingkup komputer meja, seperti Microsoft Windo...

Perjalanan Tak TergantikanAlbum studio karya The RainDirilis10 Januari 2009Direkam2008GenrePop, rock, countryLabelNagaswaraKronologi The Rain Serenade(2007)Serenade2007 Perjalanan Tak Tergantikan(2009) Jingga Senja dan Deru Hujan(2012)Jingga Senja dan Deru Hujan2012 Perjalanan Tak Tergantikan adalah album keempat dari grup band The Rain yang dirilis pada tanggal 10 Januari 2009 melalui Nagaswara. Album ini melahirkan 4 single yaitu Boleh Saja Benci, Meninggalkan Cerita Ini, Percaya dan Pe...

 

1996 Japanese animated film by Rintaro XTheatrical release poster, featuring Kamui Shiro (left) and Fuma Monou (right)Directed byRintaroScreenplay byRintaroNanase OhkawaBased onXby ClampProduced byKazuhiko IkeguchiKazuo YokoyamaMasao MaruyamaStarringTomokazu SekiKen NaritaCinematographyHitoshi YamaguchiEdited byHarutoshi OgataSatoshi TerauchiYukiko ItoMusic byYasuaki ShimizuProductioncompanyMadhouseDistributed byToei CompanyRelease dates August 3, 1996 (1996-08-03) (Japan) ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Almost nothing in this article is formatted to fit Wikipedia. Please help improve this article if you can. (August 2020) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help im...

ماغولا الإحداثيات 38°24′42″N 23°49′17″E / 38.41178°N 23.82128°E / 38.41178; 23.82128   تقسيم إداري  البلد اليونان[1]  خصائص جغرافية ارتفاع 46 متر  عدد السكان  عدد السكان 982 (2021)952 (2001)532 (1991)1063 (2011)  رمز جيونيمز 258004  تعديل مصدري - تعديل     لمعانٍ أخرى، طالع ماغول...

 

David Cicilline David Nicola Cicilline (/sɪsɪˈliːni/; lahir 15 Juli 1961) adalah seorang politikus Amerika Serikat yang menjabat sebagai anggota DPR sejak 2011.[1] Sebagai anggota Partai Demokrat, ia sebelumnya menjabat sebagai Walikota Providence ke-36 dari 2003 sampai 2011, menjadikannya walikota gay terbuka pertama dari sebuah ibukota negara bagian AS.[2][3] Referensi ^ Cotter, Pamela (November 2, 2010). Congressional District 1 race's final tally. The Providenc...

 

История Грузииსაქართველოს ისტორია Доисторическая Грузия Шулавери-шомутепинская культураКуро-араксская культураТриалетская культураКолхидская культураКобанская культураДиаухиМушки Древняя история КолхидаАриан-КартлиИберийское царство ФарнавазидыГруз�...

City in Hungary This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (October 2021) City with county rights in Northern Hungary, HungaryMiskolcCity with county rightsMiskolc Megyei Jogú VárosClockwise from the top left corner:Avas TV Tower, Castle of Diósgyőr, Széchenyi Street, National Theatre of Miskolc, Cave Bath, Ottó Herman Museum, University...

 

American lawyer and politician (1800–1880) Stephen T. LoganBornStephen Trigg Logan(1800-02-24)February 24, 1800DiedJuly 17, 1880(1880-07-17) (aged 80)NationalityAmericanOccupation(s)lawyer, politicianKnown forpracticed law with Abraham Lincoln (1841–1843)ChildrenDavid, SallyRelativesGeandfathers: Stephen Trigg, John Logan Stephen Trigg Logan (February 24, 1800 – July 17, 1880) was an American lawyer and politician. He practiced law with Abraham Lincoln from 1841 to 1843.[1...

 

Road in Italy This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2019) (Learn how and when to remove this message) Via di Grottarossa is an Italian road located north of Rome, Italy. It runs from the Grande Raccordo Anulare to the Via Flaminia. The road was part of the individual road race cycling event for the 1960 Su...

Doughnut with sour cream batter Sour cream doughnutA chocolate sour cream doughnutTypeDoughnutPlace of originCanada, United StatesMain ingredientsDoughnut batter, sour cream  Media: Sour cream doughnut A sour cream doughnut is a type of doughnut that incorporates sour cream into its batter.[1] This type of doughnut is often dipped in a vanilla flavored glaze after frying and usually has no filling.[1] While the exact date or place of origin for the sour cream doughnut...

 

Comics character Shock GibsonShock Gibson with Black Cat and Captain Freedom, Speed Comics #35, November 1944, artwork by Alex Schomburg.Publication informationPublisherBrookwood PublicationsFirst appearanceSpeed Comics #1 (Oct. 1939)Created by(writer) unknown (artist) Maurice ScottIn-story informationAlter egoRobert Charles GibsonSpeciesHumanPlace of originEarthPartnershipsBlack Cat, Captain Freedom, Tedd Parish, and the Girl CommandosAbilities Superhuman strength Fire bolts of lightning Fli...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (juillet 2019). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? C...

Art from the period of the imperial Cholas (c. 850 CE – 1250 CE) in South India This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2020) (Learn how and when to remove this message) The Brihadisvara Temple at Thanjavur, completed 1010. The vimana in the foreground is still much taller than the gopuras at right. Chola Kings and Emperors Early CholasEllalan2...

 

Convenzione di FiladelfiaTipotrattato politico Firma25 settembre 1787 LuogoFiladelfia PartiWilliam Samuel JohnsonRoger ShermanOliver EllsworthAlexander HamiltonJohn Lansing, Jr.Robert YatesGeorge ReadGunning Bedford, Jr.John DickinsonRichard BassettRichard Dobbs SpaightWilliam BlountHugh WilliamsonWilliam Richardson DavieAlexander MartinWilliam FewAbraham Baldwin e William Houstoun voci di trattati presenti su Wikipedia La Convenzione di Filadelfia (in inglese Philadelphia Convention) fu una ...

 

American actor (1883–1944) Guy UsherUsher in The Devil Bat (1940)BornJames Guy Usher(1883-05-09)May 9, 1883Mason City, Iowa, U.S.DiedJune 16, 1944(1944-06-16) (aged 61)San Diego, California, U.S.OccupationActorYears active1932–1943 James Guy Usher (May 9, 1883 – June 16, 1944)[1] was an American film actor.[2] He appeared in more than 190 films between 1932 and 1943. Born in Mason City, Iowa, Usher acted on stage before venturing into films. Billed as James...

The Pennings, EyeTypeLocal Nature ReserveLocationEye, SuffolkOS gridTM 150 736Area2.7 hectaresManaged byMid Suffolk District Council The Pennings is a 2.7 hectare Local Nature Reserve in Eye in Suffolk. It is owned and managed by Mid Suffolk District Council.[1][2] This site on the east bank of the River Dove is managed as a hay meadow. Fauna on the river bank include kingfishers and water voles.[1] There is access from Ludgate Causeway, off Hoxne Road. Wikimedia...

 

斯奈爾斯群島斯奈爾斯群島斯奈爾斯群島斯奈爾斯群島在太平洋的位置地理坐标48°01′S 166°32′E / 48.017°S 166.533°E / -48.017; 166.533面積3.5平方公里(1.4平方英里)最高海拔130米(430英尺)管轄 新西蘭人口统计人口无人居住 斯奈爾斯群島和其他亞南極群島及紐西蘭南島的相對位置圖 斯奈爾斯群島(英語:Snares Islands,毛利語:Tini Heke)是位於南極海隸屬於...