Prusinkiewicz received the 1997 SIGGRAPHComputer Graphics Achievement Award for his work.[2]
Influences
In 2006, Michael Hensel examined the work of Prusinkiewicz and his collaborators - the Calgary team - in an article published in Architectural Design. Hensel argued that the Calgary team's computational plant models or "virtual plants" which culminated in software they developed capable of modeling various plant characteristics,[3]: 14 could provide important lessons for architectural design. Architects would learn from "the self-organisation processes underlying the growth of living organisms" and the Calgary team's work uncovered some of that potential.[3] Their computational models allowed for a "quantitative understanding of developmental mechanisms" and had the potential to "lead to a synthetic understanding of the interplay between various aspects of development."[4]
Prusinkiewicz's work was informed by that of the Hungarian biologist Aristid Lindenmayer[4] who developed the theory of L-systems in 1968.[4] Lindenmayer used L-systems to describe the behaviour of plant cells and to model the growth processes, plant development and the branching architecture of plant development.[4][5][6][7]
Publications
Prusinkiewicz, Przemysław; James Hanan (1989). Lindenmayer Systems, Fractals, and Plants (Lecture Notes in Biomathematics). Springer-Verlag. ISBN978-0-387-97092-9.
^Grzegorz Rozenberg; Arto Salomaa (1980). The mathematical theory of L systems. New York: Academic Press. ISBN978-0-12-597140-9.
^Przemyslaw Prusinkiewicz; James Hanan F.; David Fracchia; Deborah R. Fowler; Martin J. M. de Boer; Lynn Mercer (May 1990), The Algorithmic Beauty of Sea Shells(PDF), Regina, Canada{{citation}}: CS1 maint: location missing publisher (link)