Protective autoimmunity

Protective autoimmunity is a condition in which cells of the adaptive immune system contribute to maintenance of the functional integrity of a tissue, or facilitate its repair following an insult. The term ‘protective autoimmunity’ was coined by Prof. Michal Schwartz of the Weizmann Institute of Science (Israel), whose pioneering studies were the first to demonstrate that autoimmune T lymphocytes can have a beneficial role in repair, following an injury to the central nervous system (CNS). Most of the studies on the phenomenon of protective autoimmunity were conducted in experimental settings of various CNS pathologies and thus reside within the scientific discipline of neuroimmunology.

Background

The adaptive immune system primarily consists of T and B lymphocytes, which can respond to specific antigens and subsequently acquire an immunological memory. The activity of adaptive immunity is critically important for host defense against pathogens. Cells of the adaptive immunity that respond to self-antigens are termed ‘autoimmune cells’. Autoimmunity, the activity of autoimmune cells, is generally considered in the context of an autoimmune disease—a pathological condition induced by an overwhelming activity of autoimmune cells. One of the hallmarks of immunity is the ability to transfer a substantial amount of lymphocytes or antibodies from one animal to another in a way that results in immunity to a certain pathogen (adaptive transfer). Similarly, autoimmune diseases can be induced experimentally by the adaptive transfer of autoimmune cells or antibodies from an animal that suffers from an autoimmune disease into a healthy animal. In a seminal study of 1999, Schwartz and colleagues demonstrated that the same autoimmune T cells that can cause an experimental autoimmune encephalomyelitis (EAE, a common model for multiple sclerosis) can also be harnessed to protect injured CNS tissue from secondary degeneration following a traumatic insult.[1] The experiment showed that after a partial crush injury of the optic nerve, rats injected with activated T cells which are specific for myelin basic protein (MBP, a common protein in the CNS) retained 3-fold more retinal ganglion cells with functionally intact axons than did rats injected with activated T cells specific for other (control) antigens. These findings indicated that at least under certain circumstances, autoimmune activity could exert a beneficial effect by protecting injured neurons from the spread of damage. Additional work by the Schwartz group has shown that protective autoimmunity is a naturally occurring physiological phenomenon that takes place spontaneously following a CNS injury.[2] Mutant mice which lack T cells (such as SCID and nude), and mice that lack T cells that can recognize CNS antigens, exhibit reduced levels of neuronal survival following CNS injury relative to normal (wild type) mice. On the other hand, mice that were genetically engineered so that most of their T cells will recognize a CNS antigen—such as transgenic mice overexpressing a T cell receptor (TcR) for MBP—exhibit elevated rates of neuronal survival after CNS injury. Experiments conducted in animal models of spinal cord injury,[3][4] brain injury,[5] glaucoma,[6] stroke,[7][8] motor neuron degeneration,[9] Parkinson’s[10] and Alzheimer's disease[11][12] have demonstrated the relevance of immune cells and in particular T cells that recognize CNS antigens in promoting neuronal survival and functional recovery from acute and chronic neurodegenerative conditions. T cells that recognize CNS antigens have also been shown to be important for maintaining the functional integrity of the adult CNS under normal non-pathological conditions. Immune deficient mice and mice which lack T cells that recognize brain antigens exhibit impairments in spatial learning and memory, and have reduced levels of cell renewal in the hippocampus and sub-ventricular zone (the brain structures where neurogenesis takes place in the adult brain).[13][14]

Mechanism of action

An immune response that takes place following CNS injury elicits a cascade of molecular and cellular events that can eventually affect the organism’s functional recovery. Immediately after an injury to the CNS, there is a local innate immune response.[15] This response is mediated primarily by microglia cells, a population of CNS-resident immune cells, which can act as phagocytes, and antigen-presenting cells. CD4+ T helper cells that were specifically activated by antigens associated with the lesion, arrive at the site of injury and locally interact with microglia and other blood-derived antigen presenting cells (e.g. dendritic cells). Local properties of antigen presenting cells (i.e. the levels of MHC-II-self antigen complexes and the type of co-stimulatory molecules) dictate the profile of the subsequent T cell response. The interaction between the T cells and the microglia/dendritic cells results in the production of a set of inflammatory cytokines (such as interferon gamma) and chemokines (chemoatractant proteins) that, in turn, orchestrate the ensuing repair process in which many cell types participate. Microglia and myeloid cells recruited from the circulating blood restrict the spread of damage by buffering excessive levels of toxic self-compounds (such as the neurotransmitter glutamate), and by producing growth factors (such as insulin-like growth factor-1) that prevent neuronal death[16] and induce axonal re-growth.[17] In addition, the chemokines produced at the site of injury attract endogenous stem or progenitor cells that can further contribute to repair by providing a source for new neurons and glial cells, and by restricting the local immune response.

The mechanism by which protective autoimmunity maintains the brain’s functional integrity under non-injurious conditions is still not known. One model suggests that CNS-specific autoimmune T cells which constantly circulate through the cerebrospinal fluid (CSF) interact with perivascular dendritic cells that reside at the choroid plexus and meninges.[18] Cytokines and growth factors secreted into the CSF by the T cells and dendritic cells then diffuse into the neural parenchyma were they locally affect neurons, glial cells and stem cells. This model infers that the level of antigen presentation (i.e. the amount of MHC-II-self antigen complexes) serves as an indicator of the level of immune activity required for maintenance of the uninjured brain.

Regulation

The outcome of autoimmune activity is determined by several factors, namely: the intensity, the location, and the duration of the autoimmune response. For an autoimmune response to be beneficial, its intensity, duration and site of activity must be tightly regulated. Although autoimmune T cells exist in all healthy individuals, a relatively small portion of the population develops autoimmune diseases. This is due to various mechanisms that constantly regulate the activity of autoimmune cells. One of the prominent autoimmune regulatory mechanisms is a sub-population of T cells called ‘regulatory T cells’ (previously known as ‘suppressor T cells’), which restrict autoimmune activity.[19] Experiments in animal models of CNS injury have shown that depletion of regulatory T cells allows an enhanced neuroprotective autoimmune response to take place after the insult.[20] Importantly, however, such an experimental manipulation can at the same time increase the susceptibility to development of an autoimmune disease.[21] Under certain conditions, an initially protective autoimmune response can reach a tipping point, after which it will have a detrimental effect on the tissue, and might even develop into an autoimmune disease. Both genetic and environmental factors (such as infection) can underlie such a transition from a neuroprotective autoimmune response into an overwhelming and detrimental autoimmune disease.

Other cell types, such as B cells and even neural progenitor cells, can promote regulation of immune response in the CNS. Stem and progenitor cells are usually regarded with respect to their potential to serve as a source for newly differentiated cells, but recently stem and progenitor cells have also been acknowledged for their ability to modulate immune activity.[22][23] Experiments have shown that injection of neural progenitor cells into the brain’s ventricles can modulate an immune response taking place at multiple inflammatory foci in a mouse model of multiple sclerosis, or at a single site at the injured spinal cord.

Therapeutic implications

The concept of protective autoimmunity is relatively new, and it has been shadowed by the historic and yet dominant view of autoimmunity as a damaging factor. Skepticism towards protective autoimmunity has been further fueled by the general concept of the CNS as being an immune privileged site in which immune cell activity is observed only under pathological conditions. Nevertheless, studies during the last decade have established that the immune system has the capacity to orchestrate a multitude of beneficial effects in the adult CNS under both normal and pathological conditions. Such effects range from the molecular level (growth factor production, buffering of toxic self compounds) through the cellular level (induction of axonal regrowth and neurogenesis) to the behavioral level (maintenance of spatial memory).

Several approaches have been used experimentally in order to harness naturally occurring immune cell activity in CNS pathologies. Here are key examples:

1. Therapeutic vaccination: This approach utilizes a common immunological manipulation. Inoculation of an antigen that is associated with the pathology, in this case the site of injury, evokes the activation and proliferation of lymphocytes which can specifically respond to the antigen used. For therapeutic purposes, vaccination with an antigen associated with the site of injury (for example peptides derived from myelin proteins) is problematic, because it carries the risk of inducing, in individuals susceptible to autoimmune diseases, an overwhelming inflammatory response that is detrimental for recovery. To circumvent this problem researchers have been using lower affinity agonists (termed ‘altered peptide ligands’) which induce a weaker immune response. Experiments in animal models of spinal cord injury revealed that the use of such altered peptide ligands is effective in promoting functional recovery without the risk of inducing a deleterious autoimmune response.

2. Alteration of regulatory T cell activity: Suppressing regulatory T cell activity following injury can allow a more robust autoimmune response to take place. For therapeutic purpose, the mere removal of regulatory T cells is, again, highly problematic because it increases the risk of inducing autoimmune diseases. Overcoming this limitation is possible using agents that transiently suppress regulatory T cell activity. Such an agent has been used successfully in an animal model of ischemic stroke, where treated animals exhibited improved neurological recovery relative to non-treated animals.

See also

References

  1. ^ Moalem, G.; et al. (1999). "Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy". Nature Medicine. 5 (1): 49–55. doi:10.1038/4734. PMID 9883839. S2CID 8877114.
  2. ^ Yoles, E.; et al. (2001). "Protective autoimmunity is a physiological response to CNS trauma". Journal of Neuroscience. 21 (11): 3740–3748. doi:10.1523/JNEUROSCI.21-11-03740.2001. PMC 6762728. PMID 11356861.
  3. ^ Hauben, E.; et al. (2001). "Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease". Journal of Clinical Investigation. 108 (4): 591–599. doi:10.1172/JCI12837. PMC 209402. PMID 11518733.
  4. ^ Hauben, E.; et al. (2000). "Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion". Journal of Neuroscience. 20 (17): 6421–6430. doi:10.1523/JNEUROSCI.20-17-06421.2000. PMC 6772980. PMID 10964948.
  5. ^ Kipnis, J.; et al. (2003). "Therapeutic vaccination for closed head injury". Journal of Neurotrauma. 20 (6): 559–569. doi:10.1089/089771503767168483. PMID 12906740. S2CID 29949747.
  6. ^ Bakalash, S.; et al. (2003). "Antigenic specificity of immunoprotective therapeutic vaccination for glaucoma". Investigative Ophthalmology and Visual Science. 44 (8): 3374–3381. CiteSeerX 10.1.1.326.9709. doi:10.1167/iovs.03-0080. PMID 12882784.
  7. ^ Frenkel, D.; et al. (2003). "Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells". Journal of Immunology. 171 (12): 6549–6555. doi:10.4049/jimmunol.171.12.6549. PMID 14662856.
  8. ^ Ziv, Y.; et al. (2007). "A novel immune-based therapy for stroke induces neuroprotection and supports neurogenesis". Stroke. 38 (2 Suppl): 774–782. doi:10.1161/01.STR.0000255784.27298.23. PMID 17261737.
  9. ^ Angelov, D. N.; et al. (2003). "Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis". PNAS. 100 (8): 4790–4795. Bibcode:2003PNAS..100.4790A. doi:10.1073/pnas.0530191100. PMC 153634. PMID 12668759.
  10. ^ Laurie, C.; et al. (2007). "CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease". Journal of Neuroimmunology. 183 (1–2): 60–68. doi:10.1016/j.jneuroim.2006.11.009. PMID 17196666. S2CID 3091367.
  11. ^ Frenkel, D.; et al. (2005). "Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease". Journal of Clinical Investigation. 115 (9): 2423–2433. doi:10.1172/JCI23241. PMC 1184038. PMID 16100572.
  12. ^ Butovsky, O.; et al. (2006). "Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1". PNAS. 103 (31): 11784–11789. doi:10.1073/pnas.0604681103. PMC 1544247. PMID 16864778.
  13. ^ Kipnis, J.; et al. (2004). "T cell deficiency leads to cognitive dysfunction: Implications for therapeutic vaccination for schizophrenia and other psychiatric conditions". PNAS. 101 (21): 8180–8185. Bibcode:2004PNAS..101.8180K. doi:10.1073/pnas.0402268101. PMC 419577. PMID 15141078.
  14. ^ Ziv, Y.; et al. (2006). "Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood". Nature Neuroscience. 9 (2): 268–275. doi:10.1038/nn1629. PMID 16415867. S2CID 205430936.
  15. ^ Hanisch, U. K.; Kettenmann, H. (2007). "Microglia: active sensor and versatile effector cells in the normal and pathologic brain". Nature Neuroscience. 10 (11): 1387–1394. doi:10.1038/nn1997. PMID 17965659. S2CID 28301217.
  16. ^ Butovsky, O.; et al. (2005). "Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective". Mol Cell Neurosci. 29 (3): 381–393. doi:10.1016/j.mcn.2005.03.005. PMID 15890528. S2CID 54250570.
  17. ^ Rapalino, O.; et al. (1998). "Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats". Nature Medicine. 4 (7): 814–821. doi:10.1038/nm0798-814. PMID 9662373. S2CID 22572079.
  18. ^ Schwartz, M.; Ziv, Y. (2008). "Immunity to self and self-maintenance: a unified theory of brain pathologies". Trends in Immunology. 29 (5): 211–219. doi:10.1016/j.it.2008.01.003. PMID 18328784.
  19. ^ Shevach, E. M. (2000). "Regulatory T cells in autoimmunity" (PDF). Annual Review of Immunology. 18 (1): 423–449. doi:10.1146/annurev.immunol.18.1.423. PMID 10837065. S2CID 15160752.
  20. ^ Kipnis, J.; et al. (2002). "Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system". PNAS. 99 (24): 15620–15625. Bibcode:2002PNAS...9915620K. doi:10.1073/pnas.232565399. PMC 137766. PMID 12429857.
  21. ^ McHugh, R. S.; Shevach, E. M. (2002). "Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease". Journal of Immunology. 168 (12): 5979–5983. doi:10.4049/jimmunol.168.12.5979. PMID 12055202.
  22. ^ Pluchino, S.; et al. (2005). "Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism". Nature. 436 (7048): 266–271. Bibcode:2005Natur.436..266P. doi:10.1038/nature03889. PMID 16015332. S2CID 4416083.
  23. ^ Ziv, Y.; et al. (2006). "Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury". PNAS. 103 (35): 13174–13179. Bibcode:2006PNAS..10313174Z. doi:10.1073/pnas.0603747103. PMC 1559772. PMID 16938843.

Further reading

  1. Supplement on autoimmunity by Nature [1]
  2. Focus on autoimmunity by Nature Immunology [2][permanent dead link]

Read other articles:

Artikel ini terlalu bergantung pada referensi dari sumber primer. Mohon perbaiki artikel ini dengan menambahkan sumber sekunder atau tersier. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Y CombinatorJenisPerseroan terbatasIndustriVenture capitalDidirikanMaret 2005PendiriPaul Graham, Jessica Livingston, Robert Morris, Trevor BlackwellKantorpusatMountain View, California, United StatesCabang2 Kantor (2014)TokohkunciPaul Graham, Jessica Livingston, Robert Morris, Trevor Bl...

 

Untuk tokoh Alkitab yang menjadi nama dari kitab ini, lihat Amos. Untuk kegunaan lain, lihat Amos (disambiguasi). Bagian dari Alkitab KristenPerjanjian LamaYosua 1:1 pada Kodeks Aleppo Taurat Kejadian Keluaran Imamat Bilangan Ulangan Sejarah Yosua Hakim-hakim Rut 1 Samuel 2 Samuel 1 Raja-raja 2 Raja-raja 1 Tawarikh 2 Tawarikh Ezra Nehemia Ester Puisi Ayub Mazmur Amsal Pengkhotbah Kidung Agung Kenabian Besar Yesaya Yeremia Ratapan Yehezkiel Daniel Kecil Hosea Yoël Amos Obaja Yunus Mikha Nahum...

 

انطباع الفنان عن الفلكانويد الفلكانويدات هي مجموعة افتراضية من الكويكبات التي تدور حول الشمس في منطقة مستقرة بشكل ديناميكي داخل مدار كوكب عطارد. سميت باسم الكوكب الافتراضي فولكان، الذي استبعد وجوده في عام 1915 مع ظهور النسبية العامة. حتى الآن، لم يتم اكتشاف أي من البراكين، �...

English children's writer (1897–1968) Enid BlytonBornEnid Mary Blyton(1897-08-11)11 August 1897East Dulwich, London, EnglandDied28 November 1968(1968-11-28) (aged 71)Hampstead, London, EnglandResting placeGolders Green CrematoriumPen nameMary PollockOccupationNovelistpoetteachershort story writerPeriod1922–1968GenreChildren's literature: adventuremysteryfantasyNotable worksNoddyThe Famous FiveThe Secret SevenFive Find-OutersMalory TowersSpouse Hugh Pollock ​ ​(m.&...

 

Pasukan Inggris mendarat dari sebuah helikopter Westland Wessex pada sebuah operasi di Borneo pada Agustus 1964. Konfrontasi Indonesia–Malaysia dimulai pada awal 1963 setelah penentangan Indonesia terhadap pembentukan Malaysia. Serangan-serangan Indonesia awal ke Malaysia Timur sangat ditunjang para sukarelawan lokal yang dilatih oleh Angkatan Darat Indonesia. Seiring berjalannya waktu, pasukan infiltrasi menjadi makin terorganisir dengan pengerahan jumlah pasukan Indonesia yang lebih besar...

 

Championnat du monde masculin du contre-la-montre par équipes de marques Généralités Sport Cyclisme sur route Création 2012 Disparition 2018 Organisateur(s) UCI Périodicité Annuelle Palmarès Tenant du titre Quick-Step Floors Plus titré(s) Quick Step (4 victoires) Pour la dernière compétition voir : Contre-la-montre par équipes masculin aux championnats du monde de cyclisme sur route 2018 modifier Le championnat du monde du contre-la-montre par équipes de marques mascul...

Voce principale: Genoa Cricket and Football Club. Associazione Calcio Genova 1893Stagione 1938-1939Sport calcio Squadra Genova 1893 Allenatore William Garbutt Presidente Juan Culiolo Serie A4º posto. Coppa ItaliaSemifinali. Coppa Europa CentraleSemifinali. Maggiori presenzeCampionato: Perazzolo (30) Miglior marcatoreCampionato: Lazzaretti (14) 1937-1938 1939-1940 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti l'Associazione Calcio Genova 1893 nelle co...

 

Soviet and Russian cosmonaut, record holder for longest single stay in space (1942–2022) Valeri PolyakovBornValeri Vladimirovich Polyakov(1942-04-27)27 April 1942Tula, Russian SFSR, Soviet UnionDied7 September 2022(2022-09-07) (aged 80)Moscow, RussiaNationalityRussianOccupationPhysicianAwardsSee belowSpace careerRoscosmos cosmonautTime in space679d 16h 33m 18sSelectionMedical Group 3MissionsMir EO-3 / Mir EO-4 (Soyuz TM-6 / Soyuz TM-7), Mir EO-15 / Mir EO-16 / Mir EO-17 (Soyuz TM-18 / ...

 

Adriana LimaLima pada Juli 2019LahirAdriana Franseca Lima12 Juni 1981 (umur 42)Salvador, Bahia, BrasilPekerjaanModelAktrisTahun aktif1997–sekarangSuami/istriMarko Jarić ​ ​(m. 2009; c. 2016)​Anak2Informasi modelingTinggi1,78 m (5 ft 10 in)[1][2]Warna rambutCokelat gelap[1][2]Warna mataBiru[1][2]Manajer Creative Artists Agency (New York, Los Angeles)[3] Elite Mod...

Ł

Letter of the Latin alphabet This article is about the orthographic character Ł. For the pound sign, see £. For the cryptocurrency, see Litecoin. Not to be confused with the IPA symbol ɫ, with Ɨ (barred i), or with Ƚ and ƚ (l with bar). Letter L with strokeŁ łUsageWriting systemLatinLanguage of originPolishPhonetic usage[w]Unicode codepointU+0141, U+0142HistoryDevelopment Λ λ𐌋L lŁ łTransliteration equivalentswOtherWriting directionLeft to rightThis article contains phonetic tra...

 

Moved or motivated to help others For other uses, see Compassion (disambiguation). Hugging is a common display of compassion Compassion is a social feeling that motivates people to go out of their way to relieve the physical, mental, or emotional pains of others and themselves. Compassion is sensitivity to the emotional aspects of the suffering of others. When based on notions such as fairness, justice, and interdependence, it may be considered partially rational in nature. Compassion involve...

 

Biblical psalm This article is about Psalm 58 in Hebrew (Masoretic) numbering. For Psalm 58 in Greek Septuagint or Latin Vulgate numbering, see Psalm 59. Psalm 58Do ye indeed speak righteousness, O congregation?Psalm 58 from Thomas Ravenscroft's Psalter: The Whole Booke of PsalmesOther name Psalm 57 Si vere utique LanguageHebrew (original) Psalm 58 is the 58th psalm of the Book of Psalms, beginning in English in the King James Version: Do ye indeed speak righteousness, O congregation?. In the...

Konser Mudhoney tahun 2007 (ki-ka: Guy Maddison, Mark Arm, Dan Peters, Steve Turner) Mudhoney adalah sebuah band grunge Amerika Serikat. Dibentuk di Seattle, Washington tahun 1988 setelah pembubaran Green River, Mudhoney terdiri dari Mark Arm (penyanyi, gitar ritme), Steve Turner (lead guitar), Matt Lukin (bass) dan Dan Peters (drum). Rilis pertama Mudhoney dengan genre Sub Pop—singel Touch Me I'm Sick dan Superfuzz Bigmuff EP—sangat memengaruhi musik di Seattle, dan membantu menginspiras...

 

2015 compilation album by J DillaDillatronicCompilation album by J DillaReleasedOctober 30, 2015GenreInstrumental hip hopLength69:45LabelVintage Vibez Music GroupProducerJ DillaJ Dilla chronology Jay Stay Paid(2009) Dillatronic(2015) The Diary(2016) Professional ratingsReview scoresSourceRatingAllMusic[1]HipHopDX3.0/5[2]Now[3]Pitchfork7.0/10[4]PopMatters[5] Dillatronic is a compilation album by hip hop musician J Dilla, released posthumously on ...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

تشمل هذه القائمة الأعلام التي تم استخدامها أو التي تستخدمها حاليًا فرنسا والمجموعات الفرنسية لما وراء البحار ومقاطعات وأقاليم ما وراء البحار الفرنسية. علم فرنسا الوطني. العلم الوطني العلم التاريخ الاستعمال الوصف 1790–1794 العلم الوطني في نهاية مملكة فرنسا وبداية الجمهورية �...

 

Pour les articles homonymes, voir Sainte-Cécile, Sainte Cécile et Cécile. Cet article est une ébauche concernant une commune de la Vendée. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est...

David Fincher awards and nominationsFincher in 2010Awards and nominationsAward Wins Nominations Academy Award 0 3BAFTA Awards 1 4Golden Globe Awards 1 4Grammy Awards 2 3Emmy Awards 4 7 American director David Fincher has been nominated three times for the Academy Award for Best Director: for The Curious Case of Benjamin Button (2008), The Social Network (2010), and Mank (2020). He won the Golden Globe Award for Best Director and the BAFTA Award for Best Direction for The Social Network. He i...

 

Questa voce sull'argomento calciatori turchi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Serkan KırıntılıNazionalità Turchia Altezza185 cm Calcio RuoloPortiere Squadra Ümraniyespor CarrieraGiovanili 1999-2002 Adanaspor Squadre di club1 2002-2004 Adanaspor11 (-?)2004-2010 Ankaragücü127 (-162)2010-2013 Fenerbahçe0 (0)2013-2015 Çaykur Rizespor64 (-94)2015-2...