Projection-slice theorem

Fourier slice theorem

In mathematics, the projection-slice theorem, central slice theorem or Fourier slice theorem in two dimensions states that the results of the following two calculations are equal:

  • Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection.
  • Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line.

In operator terms, if

  • F1 and F2 are the 1- and 2-dimensional Fourier transform operators mentioned above,
  • P1 is the projection operator (which projects a 2-D function onto a 1-D line),
  • S1 is a slice operator (which extracts a 1-D central slice from a function),

then

This idea can be extended to higher dimensions.

This theorem is used, for example, in the analysis of medical CT scans where a "projection" is an x-ray image of an internal organ. The Fourier transforms of these images are seen to be slices through the Fourier transform of the 3-dimensional density of the internal organ, and these slices can be interpolated to build up a complete Fourier transform of that density. The inverse Fourier transform is then used to recover the 3-dimensional density of the object. This technique was first derived by Ronald N. Bracewell in 1956 for a radio-astronomy problem.[1]

The projection-slice theorem in N dimensions

In N dimensions, the projection-slice theorem states that the Fourier transform of the projection of an N-dimensional function f(r) onto an m-dimensional linear submanifold is equal to an m-dimensional slice of the N-dimensional Fourier transform of that function consisting of an m-dimensional linear submanifold through the origin in the Fourier space which is parallel to the projection submanifold. In operator terms:

The generalized Fourier-slice theorem

In addition to generalizing to N dimensions, the projection-slice theorem can be further generalized with an arbitrary change of basis.[2] For convenience of notation, we consider the change of basis to be represented as B, an N-by-N invertible matrix operating on N-dimensional column vectors. Then the generalized Fourier-slice theorem can be stated as

where is the transpose of the inverse of the change of basis transform.

Proof in two dimensions

A graphical illustration of the projection slice theorem in two dimensions. f(r) and F(k) are 2-dimensional Fourier transform pairs. The projection of f(r) onto the x-axis is the integral of f(r) along lines of sight parallel to the y-axis and is labelled p(x). The slice through F(k) is on the kx axis, which is parallel to the x axis and labelled s(kx). The projection-slice theorem states that p(x) and s(kx) are 1-dimensional Fourier transform pairs.

The projection-slice theorem is easily proven for the case of two dimensions. Without loss of generality, we can take the projection line to be the x-axis. There is no loss of generality because if we use a shifted and rotated line, the law still applies. Using a shifted line (in y) gives the same projection and therefore the same 1D Fourier transform results. The rotated function is the Fourier pair of the rotated Fourier transform, for which the theorem again holds.

If f(xy) is a two-dimensional function, then the projection of f(xy) onto the x axis is p(x) where

The Fourier transform of is

The slice is then

which is just the Fourier transform of p(x). The proof for higher dimensions is easily generalized from the above example.

The FHA cycle

If the two-dimensional function f(r) is circularly symmetric, it may be represented as f(r), where r = |r|. In this case the projection onto any projection line will be the Abel transform of f(r). The two-dimensional Fourier transform of f(r) will be a circularly symmetric function given by the zeroth-order Hankel transform of f(r), which will therefore also represent any slice through the origin. The projection-slice theorem then states that the Fourier transform of the projection equals the slice or

where A1 represents the Abel-transform operator, projecting a two-dimensional circularly symmetric function onto a one-dimensional line, F1 represents the 1-D Fourier-transform operator, and H represents the zeroth-order Hankel-transform operator.

Extension to fan beam or cone-beam CT

The projection-slice theorem is suitable for CT image reconstruction with parallel beam projections. It does not directly apply to fanbeam or conebeam CT. The theorem was extended to fan-beam and conebeam CT image reconstruction by Shuang-ren Zhao in 1995.[3]

See also

References

  1. ^ Bracewell, Ronald N. (1956). "Strip integration in radio astronomy". Australian Journal of Physics. 9 (2): 198–217. Bibcode:1956AuJPh...9..198B. doi:10.1071/PH560198.
  2. ^ Ng, Ren (2005). "Fourier Slice Photography" (PDF). ACM Transactions on Graphics. 24 (3): 735–744. doi:10.1145/1073204.1073256.
  3. ^ Zhao S.R. and H.Halling (1995). "A new Fourier method for fan beam reconstruction". 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record. Vol. 2. pp. 1287–91. doi:10.1109/NSSMIC.1995.510494. ISBN 978-0-7803-3180-8. S2CID 60933220.

Further reading

Read other articles:

A questa voce o sezione va aggiunto il template sinottico {{Militare}} Puoi aggiungere e riempire il template secondo le istruzioni e poi rimuovere questo avviso. Se non sei in grado di riempirlo in buona parte, non fare nulla; non inserire template vuoti. Questa voce o sezione sugli argomenti nobili e politici albanesi non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: Voce in gran parte priva di fonti e note a supporto. Puoi migliorare que...

 

Ligat ha'Al 2000-2001 Competizione Ligat ha'Al Sport Calcio Edizione 60ª Organizzatore IFA Date dal 12 agosto 2000al 25 maggio 2001 Luogo  Israele Partecipanti 12 Risultati Vincitore Maccabi Haifa(6º titolo) Retrocessioni Bnei YehudaHapoel Tzafririm Holon Statistiche Miglior marcatore Avi Nimni (25) Incontri disputati 228 Gol segnati 603 (2,64 per incontro) Cronologia della competizione 1999-2000 2001-2002 Manuale La Ligat ha'Al 2000-2001 è stata la 60ª edizione de...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

Pour des articles plus généraux, voir Ancien archidiocèse de Narbonne et Diocèse de Carcassonne et Narbonne. Carte du diocèse de Narbonne en 1781 Cet article présente la liste des évêques métropolitains, puis archevêques du diocèse de Narbonne, primats de la Gaule narbonnaise. Évêques métropolitains IIIe siècle v. 251 : Saint Paul de Narbonne, évêque métropolitain. IIIe siècle : Étienne, évêque métropolitain[1]. IVe siècle 359 : Gavidius[...

 

若纳斯·萨文比Jonas Savimbi若纳斯·萨文比,摄于1990年出生(1934-08-03)1934年8月3日 葡屬西非比耶省Munhango(葡萄牙語:Munhango)逝世2002年2月22日(2002歲—02—22)(67歲) 安哥拉莫希科省卢库塞效命 安哥拉民族解放阵线 (1964–1966) 争取安哥拉彻底独立全国联盟 (1966–2002)服役年份1964 – 2002军衔将军参与战争安哥拉独立战争安哥拉內戰 若纳斯·马列罗·萨文比(Jonas Malheiro Savimbi,1...

 

American baseball player and manager For other people named John Gibbons, see John Gibbons (disambiguation). Baseball player John GibbonsGibbons in 2015New York Mets – No. 68Catcher / Manager / CoachBorn: (1962-06-08) June 8, 1962 (age 61)Great Falls, Montana, U.S.Batted: RightThrew: RightMLB debutApril 11, 1984, for the New York MetsLast MLB appearanceOctober 4, 1986, for the New York MetsMLB statisticsBatting average.220Home runs1Runs batted in2Manageria...

Шапочка коническая Научная классификация Домен:ЭукариотыЦарство:ГрибыПодцарство:Высшие грибыОтдел:АскомицетыПодотдел:PezizomycotinaКласс:Пецицомицеты (Pezizomycetes O.E.Erikss. & Winka, 1997)Порядок:ПецицевыеСемейство:СморчковыеРод:ШапочкаВид:Шапочка коническая Международное научное...

 

Latin designation for the Berber population of Mauretania Not to be confused with Moriori, Māori people, or Maouri people.For other uses, see Mauri (disambiguation). Mauretanian cavalry under Lusius Quietus fighting in the Dacian Wars, from the Column of Trajan Mauri (from which derives the English term Moors) was the Latin designation for the Berber population of Mauretania, located in the west side of North Africa on the shores of the Mediterranean Sea, Mauretania Tingitana and Mauretania ...

 

American bay Carancahua BayView of northern Carancahua BayCarancahua BayLocationTexas Gulf CoastCoordinates28°41′28″N 96°24′08″W / 28.691039°N 96.402283°W / 28.691039; -96.402283River sourcesEast Carancahua Creek, West Carancahua CreekOcean/sea sourcesGulf of MexicoBasin countriesUnited States Carancahua Bay is a northern extension of Matagorda Bay located in Jackson and Calhoun counties in Texas, United States. It is oriented from the southeast to the...

The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Washington Progressive Party – news · newspapers · books ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2019) طريقة الترجمة بالقواعد النحوية، أو تعرف بالطريقة الكلاسيكية، هي أسلوب تدريس تقليدي تم استخدامه لتدريس اللاتينية و اليونانية وكان رائجًا في القرن السادس ع�...

 

1938 armed confrontation in Czechoslovakia Clash at HabersbirkPart of Sudeten German uprisingDate13 September 1938LocationHabartov, Czechoslovakia50°11′0″N 12°33′1″E / 50.18333°N 12.55028°E / 50.18333; 12.55028Result Czechoslovak victoryBelligerents  Czechoslovakia SdP sympathisers FreikorpsCommanders and leaders Jan Koukol  †Jan Pardus Otto Plass  †Franz SchulJohan BurklStrength 4 gendarmes (initially), later reinforced by 11 mor...

Disambiguazione – Se stai cercando altri significati, vedi Supercoppa italiana 2011 (disambigua). Voce principale: Supercoppa italiana. Supercoppa italiana 2011Supercoppa TIM 2011 Competizione Supercoppa italiana Sport Calcio Edizione 24ª Organizzatore Lega Serie A Date 6 agosto 2011 Luogo  CinaPechino Partecipanti 2 Formula gara unica Impianto/i Stadio nazionale Risultati Vincitore Milan(6º titolo) Secondo Inter Statistiche Gol segnati 3 Pubblico 66 161 Cronologia della compet...

 

Upplands runinskrifter 11 Upplands runinskrifter 11 SignumU 11RAÄ-nr Adelsö 46:1[1]OmrådeUpplandPlaceringHovgården, Adelsö, Adelsö snTillkomsttid1000-talet e.Kr.Ristad avTolir Hovgårdsstenen, även kallad Håkanstenen, är ett runblock nedanför Hovgårdens ruiner på Adelsö i Adelsö socken och Ekerö kommun i Uppland. Runstenen som kan dateras till tiden före 1080[2] har signum U 11. Den är placerad i strandläge vid Mälaren och på andra sidan vattnet syns Birka. Inskriften Tran...

 

日本、小豆島・西光寺の墓地 日本、京都の墓地 オーストラリアブルームにある日本人墓地。 日没のイスラム教徒の墓地 マラケシュ モロッコ フィンランドのヌルミヤルヴィにある墓地 墓地(ぼち)は、亡くなった人の遺体や遺骨を埋葬する墓を設けるための区域[1]。墓場(はかば)ともいう。なお、墓をつくるために土地(墓地等)の一部を区画した部分を墓�...

Type of symmetric key cipher This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Stream cipher – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message) The operation of the keystream generator in A5/1, an LFSR-based stream cipher used to encrypt mobile phone conver...

 

Emisfero orientale alla fine del V secolo d.C. I millennio a.C. · I millennio · II millennio II secolo · III secolo · IV secolo · V secolo · VI secolo · VII secolo · VIII secolo Anni 400 · Anni 410 · Anni 420 · Anni 430 · Anni 440Anni 450 · Anni 460 · Anni 470 · Anni 480 · Anni 490 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 43...

 

Coastal forts construction and maintenance in the U.S. The outer works of Fort McHenry in Baltimore harbor, although built in the 1860s, are broadly similar to early First and Second System forts built before the War of 1812, with low earthworks, although mounting much larger cannon and reinforced with masonry. The cannon are 8-inch converted rifles (lined down from 10-inch Rodman guns) and a 15-inch Rodman gun, typical of the post-Civil War era. The Statue of Liberty is built on top of Fort ...

American opera singer and educator Vaness redirects here. Not to be confused with Van Ness, Van Nes, Vanness, Vannes, Vanes, or Vanessa. Carol Vaness, American soprano Carol Theresa Vaness (born July 27, 1952) is an American lirico-spinto soprano and university professor. Early life and education Vaness was born in San Diego and graduated with her bachelor's degree from California State Polytechnic University, Pomona. She later attended California State University, Northridge where she earned...

 

Cet article est une ébauche concernant un chanteur slovène, la Yougoslavie et le Concours Eurovision de la chanson. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Lado Leskovar Lado Leskovar en 2007.Informations générales Nom de naissance Vladimir Leskovar Naissance 23 mars 1942 (82 ans)Ljubljana, royaume de Yougoslavie Activité principale Chanteur Genre musical Pop modifier Vladimir « Lado ...