In the setting of ZMPSTE24 deficiency, the final step of lamin processing does not occur, resulting in an accumulation of farnesyl-prelamin A. In Hutchinson–Gilford progeria syndrome, a 50-amino acid deletion in prelamin A (amino acids 607–656) removes the site for the second endoproteolytic cleavage. Consequently, no mature lamin A is formed, and a farnesylated mutant prelamin A (progerin) accumulates in cells.[9] The nuclear lamina consist of a two-dimensional matrix of proteins located next to the inner nuclear membrane. The lamin family of proteins make up the matrix and are highly conserved in evolution. During mitosis, the lamina matrix is reversibly disassembled as the lamin proteins are phosphorylated. Lamin proteins are thought to be involved in nuclear stability, chromatin structure and gene expression. Vertebrate lamins consist of two types, A and B. Through alternate splicing, this gene encodes three type A lamin isoforms.[10]
Early in mitosis, maturation promoting factor (abbreviated MPF, also called mitosis-promoting factor or M-phase-promoting factor) phosphorylates specific serine residues in all three nuclear lamins, causing depolymerization of the lamin intermediate filaments. The phosphorylated lamin B dimers remain associated with the nuclear membrane via their isoprenyl anchor. Lamin A is targeted to the nuclear membrane by an isoprenyl group but it is cleaved shortly after arriving at the membrane. It stays associated with the membrane through protein-protein interactions of itself and other membrane associated proteins, such as TOR1AIP1 (LAP1). Depolymerization of the nuclear lamins leads to disintegration of the nuclear envelope. Transfection experiments demonstrate that phosphorylation of human lamin A is required for lamin depolymerization, and thus for disassembly of the nuclear envelope, which normally occurs early in mitosis.
DNA double-strand damages can be repaired by either homologous recombination (HR) or non-homologous end joining (NHEJ). LMNA promotes genetic stability by maintaining the levels of proteins that have key roles in HR and NHEJ.[19][20] Mouse cells that are deficient for maturation of prelamin A have increased DNA damage and chromosome aberrations, and show increased sensitivity to DNA damaging agents.[21] In progeria, the inadequacy of DNA repair, due to defective LMNA, may cause features of premature aging (see DNA damage theory of aging).
^Kamat AK, Rocchi M, Smith DI, Miller OJ (March 1993). "Lamin A/C gene and a related sequence map to human chromosomes 1q12.1-q23 and 10". Somat. Cell Mol. Genet. 19 (2): 203–8. doi:10.1007/BF01233534. PMID8511676. S2CID32913788.
^Zirn B, Kress W, Grimm T, Berthold LD, Neubauer B, Kuchelmeister K, Müller U, Hahn A (2008). "Association of homozygous LMNA mutation R471C with new phenotype: mandibuloacral dysplasia, progeria, and rigid spine muscular dystrophy". Am J Med Genet A. 146A (8): 1049–1054. doi:10.1002/ajmg.a.32259. PMID18348272. S2CID205309256.
^Lattanzi G, Cenni V, Marmiroli S, Capanni C, Mattioli E, Merlini L, Squarzoni S, Maraldi NM (April 2003). "Association of emerin with nuclear and cytoplasmic actin is regulated in differentiating myoblasts". Biochem. Biophys. Res. Commun. 303 (3): 764–70. doi:10.1016/S0006-291X(03)00415-7. PMID12670476.
^Sakaki M, Koike H, Takahashi N, Sasagawa N, Tomioka S, Arahata K, Ishiura S (February 2001). "Interaction between emerin and nuclear lamins". J. Biochem. 129 (2): 321–7. doi:10.1093/oxfordjournals.jbchem.a002860. PMID11173535.
^Clements L, Manilal S, Love DR, Morris GE (January 2000). "Direct interaction between emerin and lamin A". Biochem. Biophys. Res. Commun. 267 (3): 709–14. doi:10.1006/bbrc.1999.2023. PMID10673356.
Gruenbaum Y, Wilson KL, Harel A, Goldberg M, Cohen M (2000). "Review: nuclear lamins--structural proteins with fundamental functions". J. Struct. Biol. 129 (2–3): 313–23. doi:10.1006/jsbi.2000.4216. PMID10806082.
Mounkes LC, Burke B, Stewart CL (2001). "The A-type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases". Trends Cardiovasc. Med. 11 (7): 280–5. doi:10.1016/S1050-1738(01)00126-8. PMID11709282.
Vigouroux C, Magré J, Desbois-Mouthon C, Lascols O, Cherqui G, Caron M, Capeau J (2002). "[Major insulin resistance syndromes: clinical and physiopathological aspects]". J. Soc. Biol. 195 (3): 249–57. doi:10.1051/jbio/2001195030249. PMID11833462. S2CID70531120.
Burke B, Stewart CL (2002). "Life at the edge: the nuclear envelope and human disease". Nat. Rev. Mol. Cell Biol. 3 (8): 575–85. doi:10.1038/nrm879. PMID12154369. S2CID11913118.
Novelli G, D'Apice MR (2004). "The strange case of the "lumper" lamin A/C gene and human premature ageing". Trends in Molecular Medicine. 9 (9): 370–5. doi:10.1016/S1471-4914(03)00162-X. PMID13129702.
Pasotti M, Repetto A, Pisani A, Arbustini E (2004). "[Diseases associated with lamin A/C gene defects: what the clinical cardiologist ought to know]". Italian Heart Journal Supplement. 5 (2): 98–111. PMID15080529.
Lees-Miller SP (2006). "Dysfunction of lamin A triggers a DNA damage response and cellular senescence". DNA Repair (Amst.). 5 (2): 286–9. doi:10.1016/j.dnarep.2005.10.007. PMID16344005.
Donadille B, Lascols O, Capeau J, Vigouroux C (2006). "Etiological investigations in apparent type 2 diabetes: when to search for lamin A/C mutations?". Diabetes Metab. 31 (6): 527–32. doi:10.1016/S1262-3636(07)70227-6. PMID16357800.
Mazereeuw-Hautier J, Wilson LC, Mohammed S, Smallwood D, Shackleton S, Atherton DJ, Harper JI (2007). "Hutchinson–Gilford progeria syndrome: clinical findings in three patients carrying the G608G mutation in LMNA and review of the literature". Br. J. Dermatol. 156 (6): 1308–14. doi:10.1111/j.1365-2133.2007.07897.x. PMID17459035. S2CID25944330.
Sliwińska MA (2007). "[The role of lamins and mutations of LMNA gene in physiological and premature aging] Polish". Postepy Biochem. 53 (1): 46–52. PMID17718387.
Bird TD, Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (1993). "Charcot–Marie–Tooth Neuropathy Type 2". PMID20301462. {{cite journal}}: Cite journal requires |journal= (help)
Sparks SE, Quijano-Roy S, Harper A, Rutkowski A, Gordon E, Hoffman EP, Pegoraro E, Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (1993). "Congenital Muscular Dystrophy Overview". PMID20301468. {{cite journal}}: Cite journal requires |journal= (help)
Hershberger RE, Morales A, Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (1993). "LMNA-Related Dilated Cardiomyopathy". PMID20301717. {{cite journal}}: Cite journal requires |journal= (help)
Pegoraro E, Hoffman EP, Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (1993). "Limb-Girdle Muscular Dystrophy Overview". PMID20301582. {{cite journal}}: Cite journal requires |journal= (help)
Bonne G, Leturcq F, Ben Yaou R, Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (1993). "Emery–Dreifuss Muscular Dystrophy". PMID20301609. {{cite journal}}: Cite journal requires |journal= (help)
Gordon LB, Brown WT, Collins FS, Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (1993). "Hutchinson–Gilford Progeria Syndrome". PMID20301300. {{cite journal}}: Cite journal requires |journal= (help)
Martín B, Smith RJH, Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (1993). "Dense Deposit Disease/Membranoproliferative Glomerulonephritis Type II". PMID20301598. {{cite journal}}: Cite journal requires |journal= (help)