Precision glass moulding

Glass press production mould tool

Precision glass moulding is a replicative process that allows the production of high precision optical components from glass without grinding and polishing. The process is also known as ultra-precision glass pressing. It is used to manufacture precision glass lenses for consumer products such as digital cameras, and high-end products like medical systems. The main advantage over mechanical lens production is that complex lens geometries such as aspheres can be produced cost-efficiently.

Process

Summary of process
Temperature (in °C), travel (in mm), and force (in N) during the process.

The precision glass moulding process consists of six steps:[1][2]

  1. The glass blank is loaded into the lower side of the moulding tool.
  2. Oxygen is removed from the working area by filling with nitrogen and/or evacuation of the process chamber.
  3. The tool system is nearly closed (no contact of the upper mould) and the entire system of mould, die and glass is heated up. Infrared lamps are used for heating in most systems.
  4. After reaching the working temperature, which is between the transition temperature and the softening point of the glass, the moulds close further and start pressing the glass in a travel-controlled process.
  5. When the final thickness of the part has been achieved, the pressing switches over to a force-controlled process.
  6. After moulding has been completed, the glass is cooled down and the working environment is filled with nitrogen. When the lens has cooled to the point where it can be handled, it is removed from the tool.

The process is executed on a specialized moulding machine, which precisely controls the temperature, travel, and force during the process. The tools used must withstand high temperatures and pressures, and need to be resistant to chemical interaction with the glass. The mold materials also have to be suitable for machining into the precise surface profiles.

Process chain

In order to ensure the desired quality the parts are measured between each process step. Additionally, the parts are handled and transported carefully between the processing and metrology steps.

  1. Hotforming of gobs: The precision glass moulding process yields the best results in both quality and cost if it works with precise preforms. These are usually acquired by pressing or hotforming of "gobs" of molten glass. This step is done by continuous glass melting and moulding in single-sided metal moulds. This process is only suitable for high production volumes. For smaller production volumes, the preforms have to be manufactured by mechanical material-removing steps from blocks or slices of raw glass.
  2. Precision glass moulding: In this step the preform is directly formed into an optical glass lens. It is necessary to clean the glass preform and the mould before starting the process, but there is no polishing or post-machining required.
  3. Lens coating: An antireflection coating is applied to the finished lenses. The lenses are first cleaned, and then loaded into a fixture. The fixture, containing a large number of lenses, is placed in the coating machine. After finishing the process the glass lenses are removed from the holder and the holder is cleaned by sand-blasting or other techniques. Usually the optical coating is done by one of two methods: physical vapour deposition (PVD), in which oxide materials evaporate and are deposited on the lens, and plasma-enhanced chemical vapor deposition (PECVD). Chemical reactions take place in a vacuum and the reaction product is deposited on the lens. The lenses are coated for two reasons:
    1. Manipulate or improve the optical transmission / reflection
    2. Enhance the mechanical, chemical or electrical properties

Tool and mould design

Lens shapes

Shape of optical element

Precision glass moulding can be used to produce a large variety of optical form elements such as spheres, aspheres, free-form elements and array-structures.

Concerning the curvature of the lens elements, the following statements can be drawn: Acceptable lens shapes are most bi-convex, plano-convex and mild meniscus shapes. Not unacceptable but hard to mould are bi-concave lenses, steep meniscus lenses, and lenses with severe features (e.g. a bump on a convex surface). In general, plano-curved lenses are easier to mould than lenses with both sides curved since matching of flat faces is easier. Moulding concave forms with small centre thickness is difficult due to sticking of the moulded part to the mould occurring as a result of the different thermal expansion coefficients. Furthermore, it is recommended to avoid undercuts and sharp edges. For the lens design it should be considered that the lens has to be mountable in measurement systems.

Shape of preforms

The shape of the preform or "blank" needs to be chosen according to the geometry of the finished optical element. Possible preforms are spherical (ball), near spherical (gob), plano-plano, plano-convex, plano-concave, biconvex and biconcave blanks. Ball and gob-blanks do not have to be premachined whereas other preforms require grinding and polishing.[3]

The following section describes basic traits of preform choice:

  • Formed Ball Preform

“Used specifically for lenses with positive power: biconvex, plano-convex, and meniscus where the convex side is stronger than the concave side, this only works for a relatively small volume of material.”[4]

  • Ground and Polished Plano-Plano Preform

“As a lens changes to negative in power biconcave, plano-concave, and meniscus where the concave side is stronger, an alternative preform shape, plano-plano, is required for the molding process. […] Relative to a formed preform an increase in cost is observed for the manufacturing of this type of preform.”[4]

  • Ground and Polished Ball Preform

“When the geometry of a lens extends beyond the volume range of a formed ball preform, a ground and polished ball preform is required. Used for lenses with positive power: biconvex, plano-convex, and meniscus: where the convex side is stronger, this geometry allows for molding of lenses with larger total volume. […] Relative to a formed preform and a plano-plano preform, an increase in cost is observed for the manufacturing of this type of preform.”[4]

  • Ground and Polished Lenslet Preform

“The Lenslet preform is primarily for lenses with positive power, biconvex, planoconvex, and meniscus: where the convex side is the strongest surface. The use of this type of preform allows for molding of the largest volume of glass at any given time in the molding machines. The Lenslet is traditionally ground and polished to a near net shape of the final lens, and then pressed. [...] The cost associated with the manufacturing of the lenslet preform is the highest of all preform types.”[4]

  • Gob Preform

Precision gobs can be used as preforms for the production of aspherical lenses in a precision molding process. They are manufactured from a continuous glass melting process. The resulting precision gobs exhibit a very smooth firepolished surface with an excellent surface roughness and high volume accuracy.

Dimensions

The dimensions of the optical elements that can be moulded depend on the size of the moulding machine. The precision glass moulding process is not limited to small optics. For the right element geometry, it can enable economical production of aspheric lenses up to 60 mm in diameter and more than 20 mm thick.[5]

General design recommendations:

Size:

  • Diameter range: 0.5–70 mm depending on the application[6]
  • Flank angle: Sometimes <60 degree due to limited metrology[6] but higher angles are possible by some manufacturers that have expanded metrology capabilities (e.g. Panasonic UA3P or similar).
  • Edge thickness preferably > 1.0 mm,[4] alternatively 0.5 to 2.0 x center thickness[7]
  • Clear aperture should be smaller than the lens diameter, preferably at least 1.0 mm (per side) less[4]
  • Optical surfaces:[4]

Radius:

  • Base radius no less than 3.0 mm

Optical Surfaces:

  • Sags no greater than 8 mm on both concave and convex surfaces
  • Transition from the optical surface to the lens outside diameter requires a minimum radius value of 0.3 mm.

Volume:

  • Volume of the lens (including flanges), V <= 4/3 π r3, where r is the smallest local convex radius.

Tolerances

Although the form, dimensional and positional tolerances that can be achieved in precision glass moulding are subject to a natural border, the values being achieved in practice strongly depend on the degree of control and experience in mould making and moulding. The table below gives an overview of achievable manufacturing tolerances in precision glass moulding at different companies.[8]

Parameter Rochester Precision Optics[9] Braunecker[10] Lightpath Technologies[11] Ingeneric[12]

FISBA[13][14]

Diameter +0/-0.010 mm +/-0.005 mm 0,005 mm +/- 0.005 mm
Center thickness +/-0,012 mm +/- 0.010 mm 0,010 mm +/- 0.01 mm
Alignment 2,5 min (axis) < 1.5min (angular) 5 μm - 5 μm
Scratch-Dig 20-10 20-10/10-5 - 20-10
Abbe-Number +/-0.5% +/-1% 1% -
Surface Roughness - <3 nm <3 nm 5 nm 4 nm
Index of Refraction +/-0.0003 +/-0.001 0,001 -
Wedge 0.01mm +/-1 arcmin 1 arcmin 3'
RMS WFE Diffraction Limited

For aspherical lenses, the design should be able to tolerate 0.010 mm of lateral shear between surfaces plus 5 micrometres Total Internal Reflection of wedge (across the part without considering the lateral shear) to be considered robust.[7]

Specifications for aspheres:[6]

  • Surface roughness (Ra): < 3 μm depending on diameter
  • Form error (PV): < 1 μm depending on diameter

Index drop

Due to the fast cooling after moulding, the part retains a small amount of residual stress. Consequently, the glass exhibits a small change in the refractive index which has to be considered in the optical design. A higher cooling rate corresponds to a larger decrease of the refractive index. A lower cooling rate could circumvent the index drop, but would be less cost-efficient[4]

Glass material

Many glasses can be used with PGM. However, there are some limitations:[4]

Change in refractive index and Abbe number for different glass types and annealing rates
  • The glass transition temperature Tg must not exceed the maximum heating temperature of the mould
  • Many lead oxide flint glasses are not compliant with the RoHS EU directive (Restriction of certain Hazardous Substances)
  • The glass composition influences moulding tool life
  • Chalcogenide materials require certain preform shapes
  • Glass expansion/contraction is highly temperature and rate dependent phenomenon. The coefficient of thermal expansion (CTE) of mould and glass should match. High CTE difference means high deviation between the moulded glass and the mould. High CTE glasses are also critical in terms of non-uniform temperature distribution in the glass. This means that especially fast cooling can not be applied. In addition to this, the temperature difference between the warm lens directly after moulding and the surrounding air can easily cause cracks.[15][16]
  • In addition, temperature dependence of viscosity of glass, structural and stress viscoelastic relaxation of glass play an important role in determination of lens preform shape, final state of stress and shape deviation.[17]
  • The internal and external quality of the blank must be the same or better than the requirements of the finished lens since the precision glass moulding process is not able to improve the glass quality.
  • The glass exhibits a change in refractive index, called index drop, during the annealing process. This drop is caused by fast cooling of the mould insert, inducing a small amount of residual stress in the glass. As a result, the glass exhibits a small index change when compared to its fine anneal state. The index drop is small (usually .002-.006), but the optical design needs to be optimized to compensate for this change. As an example, the index drop for different glass types is displayed in the picture on the right for different annealing rates. Note that the annealing rate is not necessarily constant during the cooling process. Typical “average” annealing rates for precision molding are between 1000 K/h and 10,000 K/h (or higher). Not only the refractive index, but also the Abbe-number of the glass is changed due to fast annealing. The shown points in the picture on the right indicate an annealing rate of 3500k/h.

So-called "low-Tg-glasses" with a maximum transition temperature of less than 550 °C have been developed in order to enable new manufacturing routes for the moulds. Mould materials such as steel can be used for moulding low-Tg-glasses whereas high-Tg–glasses require a high-temperature mould material, such as tungsten carbide.

Substrate materials

The mould material must have sufficient strength, hardness and accuracy at high temperature and pressure. Good oxidation resistance, low thermal expansion and high thermal conductivity are also required. The material of the mould has to be suitable to withstand the process temperatures without undergoing deforming processes. Therefore, the mould material choice depends critically on the transition temperature of the glass material. For low-Tg-glasses, steel moulds with a nickel alloy coating can be used. Since they cannot withstand the high temperatures required for regular optical glasses, heat-resistant materials such as carbide alloys have to be used instead in this case. In addition, mould materials include aluminium alloys, glasslike or vitreous carbon, silicon carbide, silicon nitride and a mixture of silicon carbide and carbon.[18]

A commonly used material in mould making is tungsten carbide. The mould inserts are produced by means of powder metallurgy, i.e. a sintering process followed by post-machining processes and sophisticated grinding operations. Most commonly a metallic binder (usually cobalt) is added in liquid phase sintering. In this process, the metallic binder improves the toughness of the mould as well as the sintering quality in the liquid phase to fully dense material.[19] Moulds made of hard materials have a typical lifetime of thousands of parts (size dependent) and are cost-effective for volumes of 200-1000+ (depending upon the size of the part).

Mould manufacturing

Process chain of mould making
Process chain of mould making

This article describes how mould inserts are manufactured for precision glass moulding.

In order to ensure high quality standards metrology steps are implemented between each process step.

  1. Powder processing: This process step is responsible for achieving grain sizes suitable for pressing and machining. The powder is processed by milling the raw material.
  2. Pressing: This step does the pre-forming of "green" raw bodies of the mould inserts.
  3. Sintering: By sintering, the pre-formed green bodies are compressed and hardened. In order to do this the green body is heated to a temperature below the melting temperature. The sintering process consists of three phases: First, the volume and the porosity is reduced and secondly, the open porosity is reduced. In the third phase, sinter necks are formed which enhance the material's strength.
  4. Pre-Machining: The step of Pre-Machining creates the main form of the optical insert. It typically contains four process steps. These steps are grinding the inner/outer diameter, grinding the parallel/end faces of the insert, grinding/lapping of the fitting of insert, and finally, the near-net-shape grinding of the cavity. Normally, the cavity is only pre-machined to a flat or a best-fit sphere.
  5. Grinding: Grinding or finish-machining creates the final form and the surface finish of the cavity in the mould insert. Usually, the finish is carried out by grinding; a subsequent polishing step is optionally required. Finish grinding can require several changes of the grinding tool and several truing steps of the tool. Finish-machining of the mould is an iterative process: As long as the machined mould shows deviations from the nominal contour in the measurement step after grinding, it has to be reground. There is no well-defined border between pre-machining and fine grinding. Throughout the grinding process of the cavity, the grain size of the tool, the feed rate and the cutting depth are reduced whereas machining time increases. Convex surfaces are easier to manufacture. The necessary steps of workpiece preparation are the mould alignment and the mould referencing. Grinding tool alignment, grinding tool referencing and grinding tool truing also have to be done. After that polishing can be necessary to remove the anisotropic structure which remains after grinding. It can be performed manually or by a CNC-machine.
  6. Coating: Coating is the process step in which a layer is applied on the cavity surface of the optical insert which protects the mould against wear, corrosion, friction, sticking of glass and chemical reactions with glass. For coating the surface of moulds by physical vapour deposition (PVD), metals are evaporated in combination with process-gas-based chemicals. On the tool surface, highly adherent thin coatings are synthesized. Materials for coatings on optical inserts are Platinum-based PVD (mostly iridium-alloyed, standard), diamond-like carbon (not yet commercially available), SiC (CVD) on SiC-ceramics (not yet commercially available, have to be post-machined) or TiAlN (not yet commercially available). To achieve a homogeneous layer thickness, the mould's position has to be changed during coating. To prepare the mould for the coating the surfaces have to be degreased, cleaned (under clean room or near-clean room conditions) and batched. Especially the cathode of the machine has to be cleaned. After this process the workpiece has to be debatched.
  7. Assembly: In this process step the optical insert and the mould base are combined to the assembled mould. For one optical element two mould inserts are necessary which are assembled outside the machine. For the assembly height measurement and spacer adjustment are essential.
  8. Moulding Tests: This step determines whether the mould creates the specified form and surface quality. If mould is not suitable, it has to be reground. It is part of an iterative loop. The assembly of the mould has to be put into the machine to start the try-out-moulding.

In order to save the quality and enable an early warning in case of any problems between every single step there has to be a step of measurement and referencing. Besides that the time for transport and handling has to be taken into account in the planning of the process.

Metrology and quality assurance

Once process and tool have been developed, precision glass moulding has a great advantage over conventional production techniques. The majority of the lens quality characteristics are tool-bound. This means that lenses, which are pressed with the same tool and process, usually have only insignificantly small deviations. For example, an important characteristic of a lens is the form of the optical surface. In the case of aspherical lenses the measurement of optical surfaces is very difficult and connected to high efforts. Additionally, when working with tactile measurement systems there is always a risk that the optical surface might be scratched. For precision moulded lenses such measurements are only necessary for a small amount of sample lenses in order to qualify the tool. The series production can then be executed without further need for measurements. In this case, only the cleanliness of the optical surface has to be monitored. Another advantage is that the lens' center thickness can be estimated from the easily measurable edge thickness or by applying a contactless measurement system.[20]

Protective coatings

In order to enhance the mould insert's lifetime, protective coatings can be applied. “The materials that have been selected for the antistick coatings can be divided into 5 groups including: (1) single layer carbides, nitrides, oxides and borides such as TiN, BN, TiAlN, NiAlN, TiBC, TiBCN, NiCrSiB and Al2O3, (2) nitrides or carbides based gradient and multilayers, (3) nitrides based superlattice films, (4) amorphous carbon or diamond-like carbon and (5) precious metal based alloys”[21]

Experiments carried out by Ma et al. yield the following results:[21] “The higher the temperature, the smaller the wetting angle between glass gob and substrate could be observed. This indicates that severe interface chemical reaction occurred and resulted in the loss of transparency in glass appearance. The wetting experiment in nitrogen ambient improved the sticking situation. The combination of chemically stable substrates and coatings, such as Sapphire (substrate) / GaN (film) and Glass (substrate) / Al2O3 (film) can achieve the best antistick propose. The precious metal films such as PtIr (Platinum, Iridium) coated on the ceramic substrates can effectively reduce the interface reaction between the glass and substrates.”

Although PtIr is used as a standard coating material, it has the disadvantage of being expensive. Therefore, research activities aim at substituting PtIr with cheaper materials.

See also

References

  1. ^ Klocke, F. et al.: "Manufacturing of glass diffractive optics by use of molding process", American Society for Precision Engineering (Annual Meeting) 21, 2006, Monterey/Calif.
  2. ^ Klocke, F.; Dambon, O.; Hünten, M.:"Integrative Fertigung von Mikrooptiken" erschienen in "WT Werkstatttechnik Online" Heft-Nr.6/99
  3. ^ Klocke, F.; Dambon, O.; Wang, F.: "Referate der Vorträge und Poster der 81. Glastechnischen Tagung der Deutschen Glastechnischen Gesellschaft", 04. - 06. Juni 2007, Aachen
  4. ^ a b c d e f g h i Deegan, J. et al.: RPO Precision Glass Moulding Technical Brief 6/28/2007. Download here
  5. ^ Vogt, H.: Precision moulding provides compact consumer optics. Laser Focus World, July 2007, pp.115-118. To view the article online click here
  6. ^ a b c Braunecker, B.: Advanced Optics Using Aspherical Elements. SPIE Press, Bellingham, 2008, p.264
  7. ^ a b "Archer OpTx - Precision Molded Aspheres". Archived from the original on 2008-07-04. Retrieved 2009-08-14.
  8. ^ Klocke, F.; Dambon, O.; Sarikaya, H.; Pongs, G.:"Investigations to the Molding Accuracy of Complex Shaped Glass Components" from "Proceedings of the euspen International Conference – Zurich - May 2008"
  9. ^ Deegan, J. et al.:RPO Precision Glass Moulding Technical Brief 6/28/2007
  10. ^ Braunecker, B.: Advanced Optics Using Aspherical Elements. SPIE Press, Bellingham, 2008, p.255
  11. ^ Lightpath Technologies: http://www.lightpath.com/
  12. ^ "Products - Optical Components".
  13. ^ "FISBA | Advanced Optical Components and Customized Systems". www.fisba.com. Retrieved 2017-03-30.
  14. ^ "Archived copy". Archived from the original on 2017-03-31. Retrieved 2017-03-30.{{cite web}}: CS1 maint: archived copy as title (link)
  15. ^ Kunz, Andreas F. (December 2009). ""Aspheric Freedoms" of Glass: Precision glass moulding allows cost-effective fabrication of glass aspheres" (PDF). Optik & Photonik. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/opph.201190063. Retrieved 27 February 2023.
  16. ^ "By". 2014. CiteSeerX 10.1.1.677.4477. {{cite journal}}: Cite journal requires |journal= (help)
  17. ^ Ananthasayanam et.al. Final Shape of Precision Molded Optics: Part II—Validation and Sensitivity to Material Properties and Process Parameters, https://www.tandfonline.com/doi/abs/10.1080/01495739.2012.674838
  18. ^ "Glass mold material for precision glass molding - US Patent 6363747 Description". Archived from the original on 2013-04-22. Retrieved 2009-08-14.
  19. ^ Choi, W. et al.: Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography. J. Micromech. Microeng. 14 (2004) 1519–1525
  20. ^ "Photonik - Fachzeitschrift für die Optischen Technologien - das Fachmagazin im Hochtechnologiebereich der optischen Technologien wie Optoelektronik, Strahlquellen, Lasertechnik, Bildverarbeitung, optische Nachrichtentechnik, optische Messtechnik: Fachaufsätze". Archived from the original on 2009-01-22. Retrieved 2009-08-24.
  21. ^ a b Ma, K.J. et al.: Design of Protective Coatings for Glass Lens Molding. Key Engineering Materials Vols. 364-366 (2008), pp 655-661

Read other articles:

After the RainPoster teatrikal untuk After the Rain (1999)SutradaraTakashi Koizumi[1]ProduserMasato HaraHisao KurosawaDitulis olehShugoro YamamotoAkira KurosawaPemeranAkira TeraoYoshiko MiyazakiShiro MifuneMieko HaradaTatsuya NakadaiPenata musikMasaru SatoDistributorAsmik Ace EntertainmentTanggal rilis 1999 (1999) (Prancis) 22 Januari 2000 (2000-01-22) (Jepang) Durasi91 menitNegaraJepangBahasaJepangAnggaranUS$3,800,000 (perkiraan) After the Rain (雨あがるco...

 

International Resource PanelTanggal pendirian2007TipePanel ilmiah independenTokoh pentingJanez Potočnik, Izabella Teixeira (ketua bersama)Organisasi indukProgram Lingkungan Perserikatan Bangsa-Bangsa International Resource Panel adalah sebuah panel pakar ilmiah yang bertujuan membantu negara-negara menggunakan sumber daya alam secara dengan prinsip keberlanjutan (sustainability) tanpa mengorbankan kebutuhan manusia dan pertumbuhan ekonomi. Pranala luar www.resourcepanel.org www.unep.org

 

Jean de Thévenot, dari Relation d'un voyage fait au Levant (1664) Jean de Thévenot (16 Juni 1633 – 28 November 1667) adalah seorang pengelana Prancis di Timur yang banyak menulis tentang perjalanannya. Ia juga merupakan seorang ahli bahasa, ilmuwan alam, dan botanis. Ia lahir di Paris dan mengenyam pendidikan di Collège de Navarre. Ia adalah keponakan dari Melchisédech Thévenot. Referensi  Artikel ini menyertakan teks dari suatu terbitan yang sekarang berada pada ranah publik...

Logo Pervyy Kanal. Pervyy kanal (bahasa Rusia: Первый канал; IPA: [ˈpʲɛrvɨj kɐˈnaɫ]) adalah saluran televisi pertama yang disiarkan di Federasi Rusia. Saluran tersebut bermarkas besar di Pusat Teknikal Ostankino dekat Menara Ostankino, Moskwa. Pranala luar Wikimedia Commons memiliki media mengenai Pervyy Kanal. Official website (Rusia) Official website in English (Rusia) YouTube channel (Rusia) Official Worldwide Site (Rusia) Company Site (Rusia) [1] International F...

 

Monumen penguburan, Brompton Cemetery, London Louis Thomas Gunnis Leonowens (25 Oktober 1856 – 17 Februari 1919) adalah warga Inggris yang dikenal karena menjabat sebagai seorang petugas di kavaleri Kerajaan Siam dan mendirikan perusahaan dagang dengan menggunakan namanya. Kehidupan awal Ia adalah putra dari tokoh terkenal Anna Leonowens dari Anna and the King of Siam dan Thomas Leon Owens, seorang pegawai sipil dan mereka menikah di India pada tahun 1849. Ia dilahirkan di Lyn...

 

  هذه المقالة عن العقلانية في الفلسفة. لمفاهيم أخرى للعقلانية، طالع عقلانية (توضيح). عقلانيةمعلومات عامةجزء من مصطلحات علم النفس النقيض تجريبية تعديل - تعديل مصدري - تعديل ويكي بيانات رينيه ديكارتباروخ سبينوزاغوتفريد لايبنتس في الفلسفة، العقلانية هي النظرة المعرفية �...

Weather radio service of Canada Weatheradio Canada/Radiométéo CanadaFrequency162.4–162.55 MHzProgrammingFormatWeather radioOwnershipOwnerEnvironment and Climate Change Canada / Meteorological Service of CanadaLinksWebsiteWeatheradio Canada Weatheradio Canada (French: Radiométéo Canada) is a Canadian weather radio network owned and operated by Environment and Climate Change Canada's Meteorological Service of Canada division. Weatheradio Canada is headquartered in Montreal, Quebec and...

 

Presidente della RomaniaStendardo del Presidente della Romania Klaus Iohannis, attuale Presidente della Romania Nome originale(RO) Președintele României Stato Romania TipoCapo di Stato In caricaKlaus Iohannis da21 dicembre 2014 Istituito28 marzo 1974 Predecessorere di Romania Eletto daCittadini romeni Ultima elezione24 novembre 2019 Prossima elezione2024 Durata mandato5 anni SedePalazzo Cotroceni, Bucarest IndirizzoBulevardul Geniului 1 Sito webwww.presidency.ro/ Modifica dati su Wikid...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Muhammad Taufiq Arasj Waasops Panglima TNIPetahanaMulai menjabat 1 April 2024PendahuluFebriel Buyung SikumbangPenggantiPetahanaKomandan Lanud Atang SendjajaMasa jabatan29 Maret 2023 – 1 April 2024PendahuluSulionoPenggantiJuli Heryanto Ginting Informasi pribadiLahir6 Agustus 1973 (umur 50)Ujung Pandang, Sulawesi SelatanKebangsaanIndonesiaAlma materAkademi Angkatan Udara (1995)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan UdaraMasa dinas1995—sekarangPang...

 

Bagian dari seri PolitikPemungutan suara Proses Surat suara Surat suara jarak jauh Surat suara tambahan Surat suara contoh Calon dan pemilih Calon Daftar calon Daerah pemilihan Hak suara Hak suara universal Istilah Kotak suara Pemungutan suara wajib Pemungutan suara awal Pemungutan suara elektronik Pemungutan terbuka Tempat pemungutan suara Pemungutan suara melalui pos Daerah pemungutan suara Bilik suara Penghitungan suara Suara rakyat Pemungutan suara manual Mesin pemungutan suara Sistem pem...

 

Hans Leo Hassler Nama dalam bahasa asli(de) Hans Leo Haßler BiografiKelahiran5 November 1564 Nürnberg (Kota Kekaisaran Nürnberg) Kematian8 Juni 1612 (47 tahun)Frankfurt am Main (Kota Bebas Frankfurt) Penyebab kematianTuberkulosis KegiatanSpesialisasiMusik dan organ performance Pekerjaankomponis, pemain organ Periode aktif1591  –AliranRenaisans Jerman dan Musik Barok Murid dariAndrea Gabrieli, Leonhard Lechner dan Isaak Hassler InstrumenOrgan Karya kreatifKarya terkenal(1601) Mei...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gormaz – news · newspapers · books · scholar · JSTOR (April 2024) (Learn how and when to remove this message) Municipality in Castile and León, SpainGormazMunicipalityView from the hill.Gormaz in SoriaGormazLocation in Spain.Show map of Castile and LeónGormaz...

 

Cet article est une ébauche concernant une unité ou formation militaire française. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 5e Régiment d’Artillerie Insigne régimentaire du 5e Régiment d’Artillerie Divisionnaire, Royal Artillerie. Création 1791 Pays France Branche Armée de Terre Type Régiment d'artillerie Rôle Artillerie Fait partie de Brigade d’artillerie Devise Verdun Inscriptionssur l�...

 

International athletics championship eventAthletics at the II Micronesian GamesDatesJulyHost citySan Antonio, Saipan, Northern Mariana Islands LevelSeniorEvents27 (14 men, 13 women)← 1969 Saipan 1994 Mangilao → 1990 Micronesian Games Athletics competitions at the 1990 Micronesian Games were held in San Antonio, Saipan, Northern Mariana Islands, in July, 1990. A total of 27 events were contested, 14 by men and 13 by women. Medal summary Medal winners and their results were publishe...

Zoo in Jharkhand, India Tata Steel Zoological ParkLogo of Tata Steel Zoological SocietyNew Entrance gate of Tata Steel Zoological Park22°48′53″N 86°11′45″E / 22.814610°N 86.195925°E / 22.814610; 86.195925Date opened3 March 1994LocationSakchi, Jamshedpur, Jharkhand, IndiaLand area25 ha (62 acres)No. of animals432No. of species49Annual visitors1,80,040 (2021-22)MembershipsTata Steel, CZAManagementTata Steel Zoological SocietyWebsiteTata Steel Zoological...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Fontanars dels Alforins – news · newspapers · books · scholar · JSTOR (May 2024) (Learn how and when to remove this message) Municipality in Valencian Community, SpainFontanars dels AlforinsMunicipality Coat of armsFontanars dels AlforinsLocation in SpainCoordi...

 

15th-century Byzantine Greek philosopher Gemistos PlethonPortrait of Gemistos Plethon, detail of a fresco by acquaintance Benozzo Gozzoli, Palazzo Medici Riccardi, Florence, Italy.Born1355/1360Constantinople, Byzantine Empire(modern Istanbul, Turkey)Died1452/1454Mystras, Despotate of Morea, Byzantine Empire(modern Mystras, Greece)EraRenaissance philosophyRegionWestern philosophySchoolByzantine philosophyNeoplatonismMain interestsPlato's Republic, Ancient Greek religion, ZoroastrianismNotable ...

Nil

Pour les articles homonymes, voir Nil (homonymie). Nil Le Nil à l'île d'Aguilkia. Caractéristiques Longueur entre 6 400 et 6 700 km Bassin 3 400 000 km2 Bassin collecteur Bassin du Nil Débit moyen 2 830 m3/s Nombre de Strahler 10[1] Cours Source principale Nil Blanc · Localisation Nyungwe ( Rwanda)[note 1] · Coordonnées 2° 16′ 56″ S, 29° 19′ 52″ E Source secondaire Nil Bleu · Localisation Lac Tana ( Éthi...

 

奈良久留美全名Kurumi Nara國家/地區 日本居住地日本兵庫縣川西市出生 (1991-12-30) 1991年12月30日(32歲)日本大阪府箕面市身高159體重55轉職業年2009年持拍右手持拍(雙手反拍)職業獎金$2,425,339美元單打成績職業戰績310–255(54.87%)冠軍頭銜(WTA)1(ITF)5最高排名32(2014年8月18日)現今排名238(2019年5月27日)大滿貫單打成績澳網第三輪(2014)法網第二輪(2014,2015,2016,2017,2...