Poncelet's closure theorem

Illustration of Poncelet's porism for n = 3, a triangle that is inscribed in one circle and circumscribes another.

In geometry, Poncelet's closure theorem, also known as Poncelet's porism, states that whenever a polygon is inscribed in one conic section and circumscribes another one, the polygon must be part of an infinite family of polygons that are all inscribed in and circumscribe the same two conics.[1][2] It is named after French engineer and mathematician Jean-Victor Poncelet, who wrote about it in 1822;[3] however, the triangular case was discovered significantly earlier, in 1746 by William Chapple.[4]

Poncelet's porism can be proved by an argument using an elliptic curve, whose points represent a combination of a line tangent to one conic and a crossing point of that line with the other conic.

Statement

Let C and D be two plane conics. If it is possible to find, for a given n > 2, one n-sided polygon that is simultaneously inscribed in C (meaning that all of its vertices lie on C) and circumscribed around D (meaning that all of its edges are tangent to D), then it is possible to find infinitely many of them. Each point of C or D is a vertex or tangency (respectively) of one such polygon.

If the conics are circles, the polygons that are inscribed in one circle and circumscribed about the other are called bicentric polygons, so this special case of Poncelet's porism can be expressed more concisely by saying that every bicentric polygon is part of an infinite family of bicentric polygons with respect to the same two circles.[5]: p. 94 

Proof sketch

View C and D as curves in the complex projective plane P2. For simplicity, assume that C and D meet transversely (meaning that each intersection point of the two is a simple crossing). Then by Bézout's theorem, the intersection CD of the two curves consists of four complex points. For an arbitrary point d in D, let d be the tangent line to D at d. Let X be the subvariety of C × D consisting of (c,d) such that d passes through c. Given c, the number of d with (c,d) ∈ X is 1 if cCD and 2 otherwise. Thus the projection XCP1 presents X as a degree 2 cover ramified above 4 points, so X is an elliptic curve (once we fix a base point on X). Let be the involution of X sending a general (c,d) to the other point (c,d′) with the same first coordinate. Any involution of an elliptic curve with a fixed point, when expressed in the group law, has the form xpx for some p, so has this form. Similarly, the projection XD is a degree 2 morphism ramified over the contact points on D of the four lines tangent to both C and D, and the corresponding involution has the form xqx for some q. Thus the composition is a translation on X. If a power of has a fixed point, that power must be the identity. Translated back into the language of C and D, this means that if one point cC (equipped with a corresponding d) gives rise to an orbit that closes up (i.e., gives an n-gon), then so does every point. The degenerate cases in which C and D are not transverse follow from a limit argument.

See also

References

  1. ^ Weisstein, Eric W. "Poncelet's Porism." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html
  2. ^ King, Jonathan L. (1994). "Three problems in search of a measure". Amer. Math. Monthly. 101: 609–628. doi:10.2307/2974690.
  3. ^ Poncelet, Jean-Victor (1865) [1st. ed. 1822]. Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain (in French) (2nd ed.). Paris: Gauthier-Villars. pp. 311–317.
  4. ^ Del Centina, Andrea (2016), "Poncelet's porism: a long story of renewed discoveries, I", Archive for History of Exact Sciences, 70 (1): 1–122, doi:10.1007/s00407-015-0163-y, MR 3437893
  5. ^ Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).
  • Bos, H. J. M.; Kers, C.; Oort, F.; Raven, D. W. "Poncelet's closure theorem". Expositiones Mathematicae 5 (1987), no. 4, 289–364.

Read other articles:

Halaman ini berisi artikel tentang pekerjaan. Untuk kota di prefektur Ibaraki, lihat Itako, Ibaraki. Seorang itako dalam perayaan musim gugur Inako Taisai di Gunung Osore, Prefektur Aomori, Jepang. Itako (Jepang: イタコcode: ja is deprecated ), juga dikenal sebagai ichiko (市子code: ja is deprecated ) arau ogamisama (オガミサマcode: ja is deprecated ), adalah wanita tuna netra yang belatih untuk menjadi cenayang spiritual di Jepang.[1] Pelatihan melibatkan praktek-praktek as...

 

 

Kerajaan Negara Dipa1380/87[1]–1495.[1]Ibu kotaNegeri Candi Laras (ibu kota I)Negeri Candi Agung (ibu kota II)Bandar Muara Rampiau (Bandar Perdagangan)Bahasa yang umum digunakanBanjar KunoAgama Siwa-BuddhaKaharinganPemerintahanMonarkiMaharaja • sejak ±1387[2] Empu Djatmaka• ?-1495[3] Putri Kalungsu Sejarah • Didirikan 1380/87[1]• Dibubarkan 1495.[1] Didahului oleh Digantikan oleh krjKerajaan Kuripan ...

 

 

Eddy ArnoldEddy ArnoldBiographieNaissance 15 mai 1918Henderson (Tennessee)Décès 8 mai 2008 (à 89 ans)Nashville (Tennessee)Nom de naissance Richard Edward ArnoldPseudonymes Eddy Arnold, Tennessee PlowboyNationalité américaineActivités Chanteur, animateur de radio, auteur-compositeurPériode d'activité à partir de 1937Autres informationsInstrument GuitareLabels RCA Records, MGM RecordsGenre artistique Musique countrySite web www.eddyarnoldmusic.comDistinctions National Medal of Art...

Century 21 Real EstateJenisSubsidiary of RealogyIndustriReal EstateDidirikanCalifornia (1971)KantorpusatParsippany, New Jersey, U.S.Cabang73 negaraTokohkunciPatricia Barrett-Foor and Lourie Barrett-FoorKaryawan120,000Situs webwww.century21.com Century 21 Real Estate LLC adalah perusahaan agen waralaba real estate (broker properti) yang didirikan pada tahun 1971. Century 21 memiliki lebih dari 8.000 kantor yang dioperasikan secara independen di lebih dari 73 negara dan wilayah. Perusahaan ini ...

 

 

American TV series or program MLB on FS1Fox Sports 1's Major League Baseball logo as of the 2020 season.Also known asMLB on FS1MLB on Fox Sports 1GenreBaseball telecastsStarringSee MLB on Fox broadcastersTheme music composerNJJ Music (2020–present)Jochen Flach (2014–2019)Scott Schreer (2014–2019)Opening themeMLB on Fox theme music (2020–present)NFL on Fox theme music (2014–2019)Country of originUnited StatesOriginal languageEnglishNo. of seasons10ProductionProduction locationsVario...

 

 

Voce principale: Unione Sportiva Catanzaro. US CatanzaroStagione 1973-1974 Sport calcio Squadra Catanzaro Allenatore Gianni Seghedoni (1ª-15ª) Carmelo Di Bella (16ª-38ª) Presidente Nicola Ceravolo Serie B14º Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Petrini (35) Miglior marcatoreCampionato: Petrini (11) 1972-1973 1974-1975 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Unione Sportiva Catanzaro nelle competizioni ufficiali ...

Governorate in SyriaRaqqa مُحافظة الرقةGovernorateMap of Syria with Raqqa highlightedCoordinates (Raqqa): 36°00′N 38°54′E / 36°N 38.9°E / 36; 38.9Country SyriaCapitalRaqqa (AANES control)Ma'adan (Syrian Arab Republic governor's seat)Manatiq (Districts)3Government • GovernorAbdul-Razzaq Khalifa[1]Area • Total19,618 km2 (7,575 sq mi)Population (2011) • Total944,000 • ...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (août 2017). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Pour les articles homonymes, voir Balbo (homonymie)....

 

 

Pour les articles homonymes, voir Malibu. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (juin 2017). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique :...

У этого термина существуют и другие значения, см. Чайки (значения). Чайки Доминиканская чайкаЗападная чайкаКалифорнийская чайкаМорская чайка Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вторич...

 

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

German footballer (1929–2003) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Helmut Rahn – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this message) Helmut Rahn Rahn in 1962Personal informationDate of birth (1929-08-16)16 August 1929Place of birth Essen, GermanyD...

 

 

Cet article est une ébauche concernant les Jeux olympiques et la Gambie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Gambie aux Jeux olympiques d'été de 2008 Code CIO GAM Lieu Pékin Participation 7e Athlètes 3 dans 2 sports Porte-drapeau Badou Jack MédaillesRang : Or0 Arg.0 Bron.0 Total0 Historique Jeux olympiques d'été 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 Jeux olympiques d'hiver Au...

 

 

Republiken Venedig Serenìsima Repùblica Vèneta (Venetianska)Serenissima Repubblica di Venezia (Italienska) ← 697–1797 ↓ Flagga Vapen Valspråk: Pax tibi Marce, evangelista meus Nationalsång: Juditha Triumphans Republiken Venedig 1796. Joniska öarna, vilka tillhörde Venedig, visas inte på kartan. Republiken Venedig 1796. Joniska öarna, vilka tillhörde Venedig, visas inte på kartan. Huvudstad Eraclea(697–742)Malamocco(742–810)Venedig(810–1797) Största stad Venedig Språk...

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

2008–2012 political party in South Korea Not to be confused with Chinbak Yeondae. Future Hope Alliance 미래희망연대LeaderRho CheolraeAssembly leaderRho CheolraeFoundedMarch 21, 2008 (2008-03-21)DissolvedFebruary 2, 2012 (2012-02-02)[1]Split fromGrand National PartyMerged intoSaenuri PartyHeadquartersYeouido-dong, Yeongdeungpo-gu, SeoulIdeologyConservatismPro-Park Geun-HyeColors  Blue[a]  Dark blue[b]Websitegokor...

حفل توزيع جوائز الأوسكار التاسع والسبعين شعار المهرجان ويظهر في خلفيته كلمات مقتبسة من روائع الأفلام التاريخ 25 فبراير 2007  المكان مسرح دولبي  المضيف ألين دي جينيريس  الموقع الرسمي الموقع الرسمي  حفل توزيع جوائز الأوسكار الثامن والسبعون  حفل توزيع جوائز الأوسك...

 

 

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (September 2016) The Council of States of the Republic of Sudan مجلس الولايات السودانيTypeTypeUpper House of the National Legislature of Sudan HistoryFoundedAugust 2005DisbandedMay 2019 (dissolved)StructureSeats32[1]Length of term5 yearsElectionsLast election19 May 2015[2][3]Meeting placeOmdurman, SudanWebsiteRepublic of Sudan C...