In mathematics , Pisier–Ringrose inequality is an inequality in the theory of C*-algebras which was proved by Gilles Pisier in 1978 affirming a conjecture of John Ringrose . It is an extension of the Grothendieck inequality .
Statement
Theorem .[ 1] [ 2] If
γ γ -->
{\displaystyle \gamma }
is a bounded, linear mapping of one C*-algebra
A
{\displaystyle {\mathfrak {A}}}
into another C*-algebra
B
{\displaystyle {\mathfrak {B}}}
, then
‖
∑ ∑ -->
j
=
1
n
γ γ -->
(
A
j
)
∗ ∗ -->
γ γ -->
(
A
j
)
+
γ γ -->
(
A
j
)
γ γ -->
(
A
j
)
∗ ∗ -->
‖
≤ ≤ -->
4
‖ ‖ -->
γ γ -->
‖ ‖ -->
2
‖
∑ ∑ -->
j
=
1
n
A
j
∗ ∗ -->
A
j
+
A
j
A
j
∗ ∗ -->
‖
{\displaystyle \left\|\sum _{j=1}^{n}\gamma (A_{j})^{*}\gamma (A_{j})+\gamma (A_{j})\gamma (A_{j})^{*}\right\|\leq 4\|\gamma \|^{2}\left\|\sum _{j=1}^{n}A_{j}^{*}A_{j}+A_{j}A_{j}^{*}\right\|}
for each finite set
{
A
1
,
A
2
,
… … -->
,
A
n
}
{\displaystyle \{A_{1},A_{2},\ldots ,A_{n}\}}
of elements
A
j
{\displaystyle A_{j}}
of
A
{\displaystyle {\mathfrak {A}}}
.
See also
Notes
References
Pisier, Gilles (1978), "Grothendieck's theorem for noncommutative C∗ -algebras, with an appendix on Grothendieck's constants", Journal of Functional Analysis , 29 (3): 397– 415, doi :10.1016/0022-1236(78)90038-1 , MR 0512252 .
Kadison, Richard V. (1993), "On an inequality of Haagerup–Pisier" , Journal of Operator Theory , 29 (1): 57– 67, MR 1277964 .