The old term for the mineral is magnesia. Stones from the Magnesia region in ancient Anatolia contained both magnesium oxide and hydrated magnesium carbonate as well as iron oxides (such as magnetite). Thus these stones, called Stones from Magnesia in antiquity, with their unusual magnetic properties were the reason the terms magnet and magnetism were coined.
The crystal structure of periclase corresponds to that of halite and has been studied extensively due to its simplicity. As a consequence, the physical properties of periclase are well known, which makes the mineral a popular standard in experimental work. The mineral has been shown to remain stable at pressures up to at least 360 GPa.[7]
Mantle occurrence
Ferropericlase(Mg,Fe)O makes up about 20% of the volume of the lower mantle of the Earth, which makes it the second most abundant mineral phase in that region after silicate perovskite(Mg,Fe)SiO3; it also is the major host for iron in the lower mantle.[8][9] At the bottom of the transition zone of the mantle, the reaction
γ–(Mg,Fe)2[SiO4] ↔ (Mg,Fe)[SiO3] + (Mg,Fe)O
transforms γ-olivine into a mixture of perovskite and ferropericlase and vice versa. In the literature, this mineral phase of the lower mantle is also often called magnesiowüstite.[6]
^ abAnthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (2005). "Periclase"(PDF). Handbook of Mineralogy. Mineral Data Publishing. Retrieved 14 March 2022.
^McWilliams, R. Stewart; Spaulding, Dylan K.; Eggert, Jon H.; Celliers, Peter M.; Hicks, Damien G.; Smith, Raymond F.; Collins, Gilbert W.; Jeanloz, Raymond (7 December 2012). "Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature". Science. 338 (6112): 1330–1333. Bibcode:2012Sci...338.1330M. doi:10.1126/science.1229450. PMID23180773. S2CID42129866.
^Lin, Jung-Fu; Vankó, György; Jacobsen, Steven D.; Iota, Valentin; Struzhkin, Viktor V.; Prakapenka, Vitali B.; Kuznetsov, Alexei; Yo, Choong-Shik (21 September 2007). "Spin transition zone in Earth's lower mantle". Science. 317 (5845): 1740–1743. Bibcode:2007Sci...317.1740L. doi:10.1126/science.1144997. PMID17885134. S2CID43215223.