Peano surface

Model of the Peano surface in the Dresden collection

In mathematics, the Peano surface is the graph of the two-variable function

It was proposed by Giuseppe Peano in 1899 as a counterexample to a conjectured criterion for the existence of maxima and minima of functions of two variables.[1][2]

The surface was named the Peano surface (German: Peanosche Fläche) by Georg Scheffers in his 1920 book Lehrbuch der darstellenden Geometrie.[1][3] It has also been called the Peano saddle.[4][5]

Properties

Peano surface and its level curves for level 0 (parabolas, green and purple)

The function whose graph is the surface takes positive values between the two parabolas and , and negative values elsewhere (see diagram). At the origin, the three-dimensional point on the surface that corresponds to the intersection point of the two parabolas, the surface has a saddle point.[6] The surface itself has positive Gaussian curvature in some parts and negative curvature in others, separated by another parabola,[4][5] implying that its Gauss map has a Whitney cusp.[5]

Intersection of the Peano surface with a vertical plane. The intersection curve has a local maximum at the origin, to the right of the image, and a global maximum on the left of the image, dipping shallowly between these two points.

Although the surface does not have a local maximum at the origin, its intersection with any vertical plane through the origin (a plane with equation or ) is a curve that has a local maximum at the origin,[1] a property described by Earle Raymond Hedrick as "paradoxical".[7] In other words, if a point starts at the origin of the plane, and moves away from the origin along any straight line, the value of will decrease at the start of the motion. Nevertheless, is not a local maximum of the function, because moving along a parabola such as (in diagram: red) will cause the function value to increase.

The Peano surface is a quartic surface.

As a counterexample

In 1886 Joseph Alfred Serret published a textbook[8] with a proposed criterion for the extremal points of a surface given by

"the maximum or the minimum takes place when for the values of and for which and (third and fourth terms) vanish, (fifth term) has constantly the sign − , or the sign +."

Here, it is assumed that the linear terms vanish and the Taylor series of has the form where is a quadratic form like , is a cubic form with cubic terms in and , and is a quartic form with a homogeneous quartic polynomial in and . Serret proposes that if has constant sign for all points where then there is a local maximum or minimum of the surface at .

In his 1884 notes to Angelo Genocchi's Italian textbook on calculus, Calcolo differenziale e principii di calcolo integrale, Peano had already provided different correct conditions for a function to attain a local minimum or local maximum.[1][9] In the 1899 German translation of the same textbook, he provided this surface as a counterexample to Serret's condition. At the point , Serret's conditions are met, but this point is a saddle point, not a local maximum.[1][2] A related condition to Serret's was also criticized by Ludwig Scheeffer, who used Peano's surface as a counterexample to it in an 1890 publication, credited to Peano.[6][10]

Models

Models of Peano's surface are included in the Göttingen Collection of Mathematical Models and Instruments at the University of Göttingen,[11] and in the mathematical model collection of TU Dresden (in two different models).[12] The Göttingen model was the first new model added to the collection after World War I, and one of the last added to the collection overall.[6]

References

  1. ^ a b c d e Emch, Arnold (1922). "A model for the Peano Surface". American Mathematical Monthly. 29 (10): 388–391. doi:10.1080/00029890.1922.11986180. JSTOR 2299024. MR 1520111.
  2. ^ a b Genocchi, Angelo (1899). Peano, Giuseppe (ed.). Differentialrechnung und Grundzüge der Integralrechnung (in German). B.G. Teubner. p. 332.
  3. ^ Scheffers, Georg (1920). "427. Die Peanosche Fläche". Lehrbuch der darstellenden Geometrie (in German). Vol. II. pp. 261–263.
  4. ^ a b Krivoshapko, S. N.; Ivanov, V. N. (2015). "Saddle Surfaces". Encyclopedia of Analytical Surfaces. Springer. pp. 561–565. doi:10.1007/978-3-319-11773-7_33. ISBN 978-3-319-11772-0. See especially section "Peano Saddle", pp. 562–563.
  5. ^ a b c Francis, George K. (1987). A Topological Picturebook. Springer-Verlag, New York. p. 88. ISBN 0-387-96426-6. MR 0880519.
  6. ^ a b c Fischer, Gerd, ed. (2017). Mathematical Models: From the Collections of Universities and Museums – Photograph Volume and Commentary (2nd ed.). doi:10.1007/978-3-658-18865-8. ISBN 978-3-658-18864-1. See in particular the Foreword (p. xiii) for the history of the Göttingen model, Photo 122 "Penosche Fläsche / Peano Surface" (p. 119), and Chapter 7, Functions, Jürgen Leiterer (R. B. Burckel, trans.), section 1.2, "The Peano Surface (Photo 122)", pp. 202–203, for a review of its mathematics.
  7. ^ Hedrick, E. R. (July 1907). "A peculiar example in minima of surfaces". Annals of Mathematics. Second Series. 8 (4): 172–174. doi:10.2307/1967821. JSTOR 1967821.
  8. ^ Serret, J. A. (1886). Cours de calcul différentiel et intégral. Vol. 1 (3d ed.). Paris. p. 216 – via Internet Archive.{{cite book}}: CS1 maint: location missing publisher (link)
  9. ^ Genocchi, Angelo (1884). "Massimi e minimi delle funzioni di più variabili". In Peano, Giuseppe (ed.). Calcolo differenziale e principii di calcolo integrale (in Italian). Fratelli Bocca. pp. 195–203.
  10. ^ Scheeffer, Ludwig (December 1890). "Theorie der Maxima und Minima einer Function von zwei Variabeln" (PDF). Mathematische Annalen (in German). 35 (4): 541–576. doi:10.1007/bf02122660. S2CID 122837827. See in particular pp. 545–546.
  11. ^ "Peano Surface". Göttingen Collection of Mathematical Models and Instruments. University of Göttingen. Retrieved 2020-07-13.
  12. ^ Model 39, "Peanosche Fläche, geschichtet" and model 40, "Peanosche Fläche", Mathematische Modelle, TU Dresden, retrieved 2020-07-13

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Georgi BugulovInformasi pribadiNama lengkap Georgi Olegovich BugulovTanggal lahir 17 Maret 1993 (umur 30)Tinggi 1,78 m (5 ft 10 in)Posisi bermain GelandangInformasi klubKlub saat ini FC Alania-d VladikavkazKarier senior*Tahun Tim T...

 

René CaovillaBoutique di René Caovilla a Londra Stato Italia Forma societariaSocietà per azioni Fondazione1934 a Fiesso d'Artico Fondata daEdoardo Caovilla Persone chiaveRené Caovilla Settorecalzaturiero Prodotticalzature femminili Sito webwww.renecaovilla.com Modifica dati su Wikidata · Manuale René Caovilla è un'azienda italiana di lusso che produce calzature da donna e accessori. È il brand di calzature più longevo al mondo.[1] Indice 1 Storia 2 Riconosciment...

 

Aluminium fluorida Anhydrous AlF3 Nama Nama lain Aluminium(III) fluoridaAluminum trifluorida Penanda Nomor CAS 7784-18-1 Y32287-65-3 (monohidrat) Y15098-87-0 (trihidrat) Y Model 3D (JSmol) monomer: Gambar interaktifbentuk kristal: Gambar interaktif 3DMet {{{3DMet}}} ChEBI CHEBI:49464 Y ChemSpider 2039 Y Nomor EC PubChem CID 2124 Nomor RTECS {{{value}}} CompTox Dashboard (EPA) DTXSID8030712 InChI InChI=1S/Al.3FH/h;3*1H/q+3;;;/p-3 YKey: KL...

Запрос «Пугачёва» перенаправляется сюда; см. также другие значения. Алла Пугачёва На фестивале «Славянский базар в Витебске», 2016 год Основная информация Полное имя Алла Борисовна Пугачёва Дата рождения 15 апреля 1949(1949-04-15) (75 лет) Место рождения Москва, СССР[1]...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: R.C. Codogno 1908. Unione Sportiva CodognoStagione 1928-1929Sport calcio Squadra Codogno Prima_Divisione10º posto nel girone B della Prima Divisione Nord 1927-1928 1929-1930 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardan...

 

У Вікіпедії є статті про інші значення цього терміна: Добрівляни. село Добрівляни Країна  Україна Область Львівська область Район Стрийський район Громада Стрийська міська громада Код КАТОТТГ UA46100230110034601 Основні дані Засноване 1580 року Населення 828 осіб Площа 13,8 км² ...

Vessel for pressurised gases or liquids Pressure chamber redirects here. For chambers intended for human occupancy, see Hypobaric chamber and Diving chamber. A welded steel pressure vessel constructed as a horizontal cylinder with domed ends. An access cover can be seen at one end, and a drain valve at the bottom centre. A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure. Construction methods and materials may be ...

 

Dominican baseball player (born 1960) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Cecilio Guante – news · newspapers · books · scholar · JSTOR (June 2010) (Learn how and when to remove this ...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) حارة بيوت الجيش  - حارة -  تقسيم إداري البلد  اليمن المحافظة محافظة عدن المديرية مديرية الشيخ...

County in Oregon, United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hood River County, Oregon – news · newspapers · books · scholar · JSTOR (March 2007) (Learn how and when to remove this message) County in OregonHood River CountyCountyHood River County Courthouse in Hood RiverLocation within the...

 

Information technology media business InfoWorldMarch 26, 2007 cover of InfoWorldPublisherPopular Computing, Inc. (CW Communications, Inc.)InfoWorld Publishing, Inc. (IDG Communications, Inc.)First issue11 December 1978; 45 years ago (1978-12-11)Final issue2 April 2007 (2007-04-02)[1] (Now published online)CountryUnited StatesBased inSan FranciscoLanguageEnglishWebsitewww.infoworld.comISSN0199-6649 InfoWorld (IW) is an American information technology me...

 

Pindad APS-1 Prototipe panser APS-1. Perhatikan bahwa bentuk kabinnya tidak simetris. Jenis Pengangkut personel lapis baja (APC) Negara asal Indonesia Sejarah pemakaian Digunakan oleh TNI di Indonesia Sejarah produksi Perancang BPPT PT Pindad Produsen PT Pindad Jumlah produksi Hanya purwarupa, tidak diproduksi[1] Spesifikasi Berat 10–11 ton Awak 13 orang Perisai Lapis baja 8 mm Senjatautama Senapan mesin 12,7 mm Senapan mesin 7,62 mm Peluncur granat otomatis 40 mm Se...

藝聲김강훈男歌手本名金康熏英文名Kim Kanghoon昵称愛松、野桑、金小手、OST王子、大雲国籍 韩国出生金鐘雲 (1984-08-24) 1984年8月24日(39歲) 韩国忠清南道天安市职业歌手、演員、DJ语言韓語、日語、英文教育程度鮮文大學材料工程學系(肄業)青雲大學放送音樂學系學士青雲大學情報產業大學院放送音樂學系碩士仁荷大學大學院文化經營學博士宗教信仰天主教(聖名�...

 

Canadian airline (1947–1986) For other uses, see QBA (disambiguation). Quebecair IATA ICAO Callsign QB QBA QUEBECAIR Commenced operations1947 (1947)Ceased operations1986 (1986)HubsMontréal–DorvalMontréal–MirabelFleet sizeSee Fleet belowDestinations27HeadquartersSaint-Laurent, Quebec, Canada Quebecair was a Canadian airline that operated from 1947 until 1986. Quebecair was headquartered in Saint-Laurent, Quebec, now a part of Montreal.[1] History Early years Early Que...

 

Cet article est une ébauche concernant le rugby à XV et les Tuvalu. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Tuvalu Premier match officiel -Plus large victoire – Plus large défaite – Données clés Coupe du monde   · Participations - · Meilleur résultat - modifier L'équipe des Tuvalu de rugby à XV rassemble les meilleurs joueurs de rugby à XV des Tuvalu et est membre de la Fede...

Type of variable star that pulsates radially Cepheid redirects here. For other uses, see Cepheid (disambiguation). RS Puppis, one of the brightest known Cepheid variable stars in the Milky Way galaxy(Hubble Space Telescope) A Cepheid variable (/ˈsɛfi.ɪd, ˈsiːfi-/) is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period and amplitude. Cepheids are important cosmic benchmarks for scaling galact...

 

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (December 2014) (Learn how and when to remove this message) Part of a series on theCulture of Korea Society History People Diaspora Language Names of Korea Religion Arts and literature Architecture Art Pottery Painting Dance Film North South Literature North South Poetry Manhwa...

 

Type of metric change in music This article is about the musical concept. For the song by Nas, see Halftime (song). For other uses, see Half time (disambiguation). Double time and Double-time redirect here. For the jump rope documentary, see Doubletime. For other uses, see Double Time. Basic time signatures: 44, also known as common time (); 22, also known as cut time or cut-common time (); etc. In popular music, half-time is a type of meter and tempo that alters the rhythmic feel by essentia...

Military campaign in 1147 Wendish CrusadePart of Northern CrusadesThe Capture of the WendsDate1147LocationNorthern Europe (Modern day Mecklenburg, in Dobin am See, Demmin and Malchow)Result Crusader military victory, successful partial conversion of West Slavs and Niklot and Pribislav agreed to accept CatholicismTerritorialchanges March of Brandenburg reconquers Havelberg, County of Holstein expels its WendsBelligerents Crusaders Holy Roman Empire Bishopric of Havelberg March of Meissen March...

 

Dutch model (born 1994) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Daphne Groeneveld – news · newspapers · books · scholar · JSTOR (August 2013) (Learn how and when to remove this message) ...