Parallel task scheduling

Parallel task scheduling (also called parallel job scheduling[1][2] or parallel processing scheduling[3]) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling. In a general job scheduling problem, we are given n jobs J1J2, ..., Jn of varying processing times, which need to be scheduled on m machines while trying to minimize the makespan - the total length of the schedule (that is, when all the jobs have finished processing). In the specific variant known as parallel-task scheduling, all machines are identical. Each job j has a length parameter pj and a size parameter qj, and it must run for exactly pj time-steps on exactly qj machines in parallel.

Veltman et al.[4] and Drozdowski[3] denote this problem by in the three-field notation introduced by Graham et al.[5] P means that there are several identical machines running in parallel; sizej means that each job has a size parameter; Cmax means that the goal is to minimize the maximum completion time. Some authors use instead.[1] Note that the problem of parallel-machines scheduling is a special case of parallel-task scheduling where for all j, that is, each job should run on a single machine.

The origins of this problem formulation can be traced back to 1960.[6] For this problem, there exists no polynomial time approximation algorithm with a ratio smaller than unless .[citation needed]

Definition

There is a set of jobs, and identical machines. Each job has a processing time (also called the length of j), and requires the simultaneous use of machines during its execution (also called the size or the width of j).

A schedule assigns each job to a starting time and a set of machines to be processed on. A schedule is feasible if each processor executes at most one job at any given time. The objective of the problem denoted by is to find a schedule with minimum length , also called the makespan of the schedule. A sufficient condition for the feasibility of a schedule is the following

.

If this property is satisfied for all starting times, a feasible schedule can be generated by assigning free machines to the jobs at each time starting with time .[1][2] Furthermore, the number of machine intervals used by jobs and idle intervals at each time step can be bounded by .[1] Here a machine interval is a set of consecutive machines of maximal cardinality such that all machines in this set are processing the same job. A machine interval is completely specified by the index of its first and last machine. Therefore, it is possible to obtain a compact way of encoding the output with polynomial size.

Computational hardness

This problem is NP-hard even when there are only two machines and the sizes of all jobs are (i.e., each job needs to run only on a single machine). This special case, denoted by , is a variant of the partition problem, which is known to be NP-hard.

When the number of machines m is at most 3, that is: for the variants and , there exists a pseudo-polynomial time algorithm, which solves the problem exactly.[7]

In contrast, when the number of machines is at least 4, that is: for the variants for any , the problem is also strongly NP-hard[8] (this result improved a previous result[7] showing strong NP-hardness for ).

If the number of machines is not bounded by a constant, then there can be no approximation algorithm with an approximation ratio smaller than unless . This holds even for the special case in which the processing time of all jobs is , since this special case is equivalent to the bin packing problem: each time-step corresponds to a bin, m is the bin size, each job corresponds to an item of size qj, and minimizing the makespan corresponds to minimizing the number of bins.

Variants

Several variants of this problem have been studied.[3] The following variants also have been considered in combination with each other.

Contiguous jobs: In this variant, the machines have a fixed order . Instead of assigning the jobs to any subset , the jobs have to be assigned to a contiguous interval of machines. This problem corresponds to the problem formulation of the strip packing problem.

Multiple platforms: In this variant, the set of machines is partitioned into independent platforms. A scheduled job can only use the machines of one platform and is not allowed to span over multiple platforms when processed.

Moldable jobs: In this variant each job has a set of feasible machine-counts . For each count , the job can be processed on d machines in parallel, and in this case, its processing time will be . To schedule a job , an algorithm has to choose a machine count and assign j to a starting time and to machines during the time interval A usual assumption for this kind of problem is that the total workload of a job, which is defined as , is non-increasing for an increasing number of machines.

Release dates: In this variant, denoted by , not all jobs are available at time 0; each job j becomes available at a fixed and known time rj. It must be scheduled after that time.

Preemption: In this variant, denoted by , it is possible to interrupt jobs that are already running, and schedule other jobs that become available at that time.

Algorithms

The list scheduling algorithm by Garey and Graham[9] has an absolute ratio , as pointed out by Turek et al.[10] and Ludwig and Tiwari.[11] Feldmann, Sgall and Teng[12] observed that the length of a non-preemptive schedule produced by the list scheduling algorithm is actually at most times the optimum preemptive makespan. A polynomial-time approximation scheme (PTAS) for the case when the number of processors is constant, denoted by , was presented by Amoura et al.[13] and Jansen et al.[14] Later, Jansen and Thöle [2] found a PTAS for the case where the number of processors is polynomially bounded in the number of jobs. In this algorithm, the number of machines appears polynomially in the time complexity of the algorithm. Since, in general, the number of machines appears only in logarithmic in the size of the instance, this algorithm is a pseudo-polynomial time approximation scheme as well. A -approximation was given by Jansen,[15] which closes the gap to the lower bound of except for an arbitrarily small .

Differences between contiguous and non-contiguous jobs

Given an instance of the parallel task scheduling problem, the optimal makespan can differ depending on the constraint to the contiguity of the machines. If the jobs can be scheduled on non-contiguous machines, the optimal makespan can be smaller than in the case that they have to be scheduled on contiguous ones. The difference between contiguous and non-contiguous schedules has been first demonstrated in 1992[16] on an instance with tasks, processors, , and . Błądek et al.[17] studied these so-called c/nc-differences and proved the following points:

  • For a c/nc-difference to arise, there must be at least three tasks with
  • For a c/nc-difference to arise, there must be at least three tasks with
  • For a c/nc-difference to arise, at least processors are required (and there exists an instance with a c/nc-difference with ).
  • For a c/nc-difference to arise, the non-contiguous schedule length must be at least
  • The maximal c/nc-difference is at least and at most
  • To decide whether there is an c/nc-difference in a given instance is NP-complete.

Furthermore, they proposed the following two conjectures, which remain unproven:

  • For a c/nc-difference to arise, at least tasks are required.

There are related scheduling problems in which each job consists of several operations, which must be executed in sequence (rather than in parallel). These are the problems of open shop scheduling, flow shop scheduling and job shop scheduling.

References

  1. ^ a b c d Johannes, Berit (2006-10-01). "Scheduling parallel jobs to minimize the makespan". Journal of Scheduling. 9 (5): 433–452. doi:10.1007/s10951-006-8497-6. hdl:20.500.11850/36804. ISSN 1099-1425. S2CID 18819458.
  2. ^ a b c Jansen, Klaus.; Thöle, Ralf. (2010-01-01). "Approximation Algorithms for Scheduling Parallel Jobs". SIAM Journal on Computing. 39 (8): 3571–3615. doi:10.1137/080736491. ISSN 0097-5397.
  3. ^ a b c Drozdowski, Maciej (2009). "Scheduling for Parallel Processing". Computer Communications and Networks. doi:10.1007/978-1-84882-310-5. ISBN 978-1-84882-309-9. ISSN 1617-7975.
  4. ^ Veltman, B; Lageweg, B. J; Lenstra, J. K (1990-12-01). "Multiprocessor scheduling with communication delays". Parallel Computing. 16 (2): 173–182. doi:10.1016/0167-8191(90)90056-F. ISSN 0167-8191.
  5. ^ Graham, R. L.; Lawler, E. L.; Lenstra, J.K.; Rinnooy Kan, A.H.G. (1979). "Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey" (PDF). Proceedings of the Advanced Research Institute on Discrete Optimization and Systems Applications of the Systems Science Panel of NATO and of the Discrete Optimization Symposium. Elsevier. pp. (5) 287–326.
  6. ^ Codd, E. F. (1960-06-01). "Multiprogram scheduling". Communications of the ACM. 3 (6): 347–350. doi:10.1145/367297.367317. S2CID 14701351.
  7. ^ a b Du, Jianzhong.; Leung, Joseph Y.-T. (1 November 1989). "Complexity of Scheduling Parallel Task Systems". SIAM Journal on Discrete Mathematics. 2 (4): 473–487. doi:10.1137/0402042. ISSN 0895-4801.
  8. ^ Henning, Sören; Jansen, Klaus; Rau, Malin; Schmarje, Lars (1 January 2020). "Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing". Theory of Computing Systems. 64 (1): 120–140. arXiv:1705.04587. doi:10.1007/s00224-019-09910-6. ISSN 1433-0490. S2CID 67168004.
  9. ^ Garey, M. R.; Graham, R. L. (1 June 1975). "Bounds for Multiprocessor Scheduling with Resource Constraints". SIAM Journal on Computing. 4 (2): 187–200. doi:10.1137/0204015. ISSN 0097-5397.
  10. ^ Turek, John; Wolf, Joel L.; Yu, Philip S. "Approximate algorithms scheduling parallelizable tasks | Proceedings of the fourth annual ACM symposium on Parallel algorithms and architectures". dl.acm.org. doi:10.1145/140901.141909. S2CID 15607549.
  11. ^ Ludwig, Walter; Tiwari, Prasoon (1994). "Scheduling malleable and nonmalleable parallel tasks | Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms". Fifth Annual {ACM-SIAM} Symposium on Discrete Algorithms (SODA): 167–176.
  12. ^ Feldmann, Anja; Sgall, Jiří; Teng, Shang-Hua (1 August 1994). "Dynamic scheduling on parallel machines". Theoretical Computer Science. 130 (1): 49–72. doi:10.1016/0304-3975(94)90152-X. ISSN 0304-3975.
  13. ^ Amoura, Abdel Krim; Bampis, Evripidis; Kenyon, Claire; Manoussakis, Yannis (1 February 2002). "Scheduling Independent Multiprocessor Tasks". Algorithmica. 32 (2): 247–261. doi:10.1007/s00453-001-0076-9. ISSN 1432-0541. S2CID 17256951.
  14. ^ Jansen, Klaus; Porkolab, Lorant (1 March 2002). "Linear-Time Approximation Schemes for Scheduling Malleable Parallel Tasks". Algorithmica. 32 (3): 507–520. doi:10.1007/s00453-001-0085-8. hdl:11858/00-001M-0000-0014-7B6C-D. ISSN 1432-0541. S2CID 2019475.
  15. ^ Jansen, Klaus (2012). "A(3/2+ε) approximation algorithm for scheduling moldable and non-moldable parallel tasks | Proceedings of the twenty-fourth annual ACM symposium on Parallelism in algorithms and architectures". 24th {ACM} Symposium on Parallelism in Algorithms and Architectures,{SPAA}. doi:10.1145/2312005.2312048. S2CID 6586439.
  16. ^ "Approximate algorithms scheduling parallelizable tasks | Proceedings of the fourth annual ACM symposium on Parallel algorithms and architectures". doi:10.1145/140901.141909. S2CID 15607549. {{cite journal}}: Cite journal requires |journal= (help)
  17. ^ Błądek, Iwo; Drozdowski, Maciej; Guinand, Frédéric; Schepler, Xavier (1 October 2015). "On contiguous and non-contiguous parallel task scheduling". Journal of Scheduling. 18 (5): 487–495. doi:10.1007/s10951-015-0427-z. ISSN 1099-1425.

Read other articles:

Ferrari 360InformasiProdusenFerrariMasa produksi1999–20048,800 (Modena)7,565 (Spider)1,288 (Challenge Stradale)[1]Model untuk tahun2000–2004PerakitanItalyia: MaranelloPerancangGoran Popović di Pininfarina[2][3][4]Bodi & rangkaKelasSports car (S)Bentuk kerangka2-pintu berlinetta2-door spiderTata letakLongitudinal, Rear mid-engine, rear-wheel drivePenyalur dayaMesin3,6 L (3.586 cc) Tipo F131 V8Transmisi6-percepatan manual6-percepatan ...

 

Keuskupan OrléansDioecesis AurelianensisDiocèse d'OrléansKatolik Katedral OrléansLokasiNegara PrancisWilayahLoiretProvinsi gerejawiToursStatistikLuas6.811 km2 (2.630 sq mi)Populasi- Total- Katolik(per 2013)656.000445,000 (67.8%)InformasiDenominasiKatolik RomaRitusRitus LatinPendirianAbad ke-3KatedralBasilika Katedral Salib Kudus di OrléansPelindungSanto AignanusKepemimpinan kiniPausFransiskusUskupJacques André BlaquartUskup agungBernard-Nicolas Je...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2017. Brodo IndonesiaIndustriRetail & E-CommercePendiriYukka Harlanda & Putera Dwi KaruniaKantorpusatBandung, IndonesiaProdukSepatuPakaianAksesorisFashion PriaSitus webhttp://bro.do Brodo (merek) adalah sebuah perusahaan fashion pria berbasis retail da...

  لمعانٍ أخرى، طالع برينسفيل (توضيح). برينسفيل   الإحداثيات 40°55′54″N 89°45′21″W / 40.9317°N 89.7558°W / 40.9317; -89.7558  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة بيوريا  خصائص جغرافية  المساحة 1.69 ميل مربع  عدد السكان  عدد ا�...

 

Untuk kegunaan lain, lihat Salome. Salome menunjuk pada kepala Yohanes Pembaptis sebagai permintaan yang ditawarkan dari herodes, Lukisan oleh Gustave Moreau Salome adalah anak Herodias dari suami bernama Herodes Filipus (saudara Herodes Antipas, keduanya anak Herodes Agung).[1] Lalu Herodias diperistri oleh Herodes Antipas.[1] Sehingga Salome bisa disebut sebagai anak tiri Herodes Antipas.[2] Herodes Antipas adalah raja yang telah memerintahkan supaya kepala Yohanes P...

 

American psychiatrist (1922–2009) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is in list format but may read better as prose. You can help by converting this article, if appropriate. Editing help is available. (July 2013) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: There are external links in the article, long lists e...

Hare Kon.Gambar sampul manga Hare Kon. volume pertamaハレ婚。GenreRomantis MangaPengarangNONPenerbitKodanshaMajalahWeekly Young MagazineDemografiSeinenTerbit23 Juni 2014 – 17 Juni 2019Volume19 (Daftar volume)  Portal anime dan manga Hare Kon. (Jepang: ハレ婚。code: ja is deprecated ) adalah sebuah seri manga seinen Jepang yang ditulis dan diilustrasikan oleh NON. Manga ini mulai dimuat dalam majalah Weekly Young Magazine terbitan Kodansha sejak bulan Juni 2014 hingga Juni 2...

 

Coppa di Croazia 2017-2018Hrvatski nogometni kup 2017./18. Competizione Coppa di Croazia Sport Calcio Edizione 27ª Organizzatore HNS Date dal 19 agosto 2017al 23 maggio 2018 Luogo  Croazia Partecipanti 48 Formula Eliminazione diretta Risultati Vincitore Dinamo Zagabria(15º titolo) Secondo Hajduk Spalato Semi-finalisti RijekaLokomotiva Zagabria Statistiche Miglior marcatore Mirko Marić (4) Incontri disputati 47 Gol segnati 193 (4,11 per incontro) Cronologia della com...

 

Yemen portal The city is the administrative division which falls under the division of the directorate in the urban, which is the centre of the provinces and the centre of districts as well as every urban population with a population of (5,000) or more people and a basic service or more available.Map of Yemen Sana'a, capital of Yemen Ta'izz Aden Mukalla Here is a list of cities in Yemen: Cities in Yemen Rank Name Population Governorate Transcription Arabic Census 1994 Estimate 2005[needs...

شيش كبابشيش كباب مع بصل، فلفل مشوي، شريحة من الطماطم وأوراق جرجيرمعلومات عامةالمنشأ تركيا النوع طبق لحم تعديل - تعديل مصدري - تعديل ويكي بيانات شيش كباب (بالتركية: şiş kebap)‏ هي وجبة شعبية شهيرة في تركية ودول الشرق الأوسط وشمال افريقيا تتكون من مكعبات اللحم المشوية في سيخ.[1&...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

British princess (born 1988) For other princesses named Beatrice, see Princess Beatrice (disambiguation). Not to be confused with Beatrix of the Netherlands. Princess BeatriceMrs Edoardo Mapelli MozziBeatrice in 2018BornPrincess Beatrice of York (1988-08-08) 8 August 1988 (age 35)Portland Hospital, London, EnglandSpouse Edoardo Mapelli Mozzi ​ ​(m. 2020)​IssueSienna Mapelli MozziNamesBeatrice Elizabeth MaryHouseWindsorFatherPrince Andrew, Duke of YorkMo...

American pioneer scuba diver, underwater photographer and actress This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Zale Parry – news · newspapers · books · scholar · JSTOR (November 2009) (Learn ...

 

Austrian experimental backpack helicopter NR 54 NR 54 V2 replica at Hubschraubermuseum Bückeburg Role backpack helicopterType of aircraft National origin Austria Manufacturer Nagler-Rolz Introduction 1940 (NR 55)1941 (NR 54) Status Abandoned Number built 2 (NR 54)1 (NR 55) The Nagler-Rolz NR 54 is an Austrian experimental foldable backpack helicopter developed during World War II. An enlarged variant, the NR 55, was also built. Design and development The NR 54 was developed by Austrian engin...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

Manager, overseer or custodian For other uses, see Bailiff (disambiguation). Not to be confused with Baillif. This article should specify the language of its non-English content, using {{lang}}, {{transliteration}} for transliterated languages, and {{IPA}} for phonetic transcriptions, with an appropriate ISO 639 code. Wikipedia's multilingual support templates may also be used. See why. (April 2021) Bailiff's notice on boarded-up pre...

 

Music considered to have widespread appeal Popular song redirects here. For other uses, see Popular Song (disambiguation). For the musical genre, see Pop music. For the 2004 film, see Popular Music (film). Popular music Timeline of musical events 2020s 2010s 2000s 1990s 1980s 1970s 1960s 1950s 1940s 1930s 1920s 1910s 1900s 1890s 1880s 1870s 1860s 1850s 1840s 1830s 1820s 1810s 1800s 1790s 1780s 1770s 1760s 1750s 1740s 1730s 1720s 1710s 1700s 1690s 1680s 1670s 1660s 1650s 1640s 1630s 1620s 1610...

 

Peta hutan kerangas di Indonesia Hutan kerangas adalah hutan yang memiliki lahan ekstrem dan rawan atau sangat peka terhadap gangguan misalnya kebakaran.[1][2] Kata kerangas berasal dari bahasa Dayak Iban yang memiliki arti tanah yang tidak dapat ditanami padi.[1] Sebutan tersebut diberikan karena kandungan tanah yang membentuk hutan kerangas sangat miskin unsur hara.[1] Vegetasi yang mampu bertahan di hutan kerangas umumnya telah beradaptasi secara luar biasa ...

For the China-born American anthropologist, see Francis L. K. Hsu. Chinese clergyman His Excellency, The Most ReverendFrancis Hsu Chen-PingBishop of Hong KongDioceseHong KongInstalled30 November 1968Term ended23 May 1973PredecessorLorenzo BianchiSuccessorPeter LeiOrdersOrdination14 March 1959Consecration7 October 1967by Lorenzo BianchiPersonal detailsBorn(1920-02-20)20 February 1920Shanghai, Republic of ChinaDied23 May 1973(1973-05-23) (aged 53)British Hong KongBuriedCrypt at Cathed...

 

Caves near Dunhuang City, Gansu, China Dunhuang Caves redirects here. For other uses, see Dunhuang Caves (disambiguation). Mogao CavesNative name 莫高窟LocationDunhuang, Gansu, ChinaCoordinates40°02′14″N 94°48′15″E / 40.03722°N 94.80417°E / 40.03722; 94.80417 UNESCO World Heritage SiteTypeCulturalCriteriai, ii, iii, iv, v, viDesignated1987 (11th session)Reference no.440RegionAsia-Pacific Location of Mogao Caves in GansuShow map of GansuMogao Caves (...