Otoconcha dimidiata

Otoconcha dimidiata
Otoconcha dimidiata from Wainuiomata Regional Park
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Mollusca
Class: Gastropoda
Order: Stylommatophora
Family: Charopidae
Genus: Otoconcha
Species:
O. dimidiata
Binomial name
Otoconcha dimidiata
(Pfeiffer, 1853)[1]
Synonyms
  • Vitrina dimidiata Pfeiffer, 1853

Otoconcha dimidiata is a species of small air-breathing semi-slug, a terrestrial pulmonate gastropod mollusc in the family Charopidae. It has a very thin and cap like shell hidden under its skin in the rounded swelling behind the head.

Otoconcha dimidiata is the type species of the genus Otoconcha.

Distribution

This species occurs in both North and South islands of New Zealand.

Habitat

This semi slug lives in rotting logs where it is rarely seen because of its secretive habits, but it is not rare. It can be found by careful searching by torch light in damp areas of native forest.

Ecology

Otoconcha dimidiata is the preferred prey of the carnivorous land gastropod Schizoglossa novoseelandica.[2]

References

  1. ^ Pfeiffer L. K. G. (1853). Monogr. Helix Vi... 3: page 6.
  2. ^ Murdoch R. C. (1894) "Notes on the variation and habits of Schizoglossa novoseelandica". Proceedings of the malacological society 1(3): 138.
  • Baker H. B. (1938) "The Endodont genus Otochoncha". 23: page 89-91.
  • Suter H. (1913). Manual of the New Zealand Mollusca. Wellington, 1120 pp. page 620.
  • Suter H. (1915). Manual of the New Zealand Mollusca. Atlas of plates. John Mackay, Government printer, Wellington. plate 25, figure 2, 2a.


Read other articles:

Cueva de las Manos, Río PinturasSitus Warisan Dunia UNESCOKriteriaCultural: iiiNomor identifikasiUNESCO WHC website 936Pengukuhan1999 (23) Cueva de las Manos (Bahasa Spanyol yang berarti Gua Tangan-tangan) adalah gua yang terletak di provinsi Santa Cruz, Argentina, 163 km sebelah selatan kota Perito Moreno, pada perbatasan Taman Nasional Francisco P. Moreno. Pranala luar Wikimedia Commons memiliki media mengenai Cueva de las Manos, Río Pinturas. UNESCO World Heritage Sites Cueva d...

 

Organic compound containing a –C(=O)OH group COOH redirects here. For the Bulgarian musician, see Ivan Shopov. Not to be confused with Carbolic acid. Structure of a carboxylic acid Carboxylate anion 3D structure of a carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group (−C(=O)−OH)[1] attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R re...

 

Turkish politician Ahmet Fetgeri AşeniPersonal detailsBorn1886Sakarya Province, Ottoman EmpireDied1966Kocaeli, TurkeyNationalityTurkish Ahmet Fetgeri Aşeni (1886–1966) was a Turkish navy officer, sports official and politician during the Atatürk era. He was also one of the founding members of Beşiktaş JK, which he also served as a president.[1][2] Life He served as the president of the Turkish Wrestling Federation and the Turkish Athletics Federation. He graduated from ...

Mattakkalappu Maanmiyam Mattakallappu Manmiyam cover pageAuthorF. X. NadarajahOriginal titleமட்டக்களப்பு மான்மியம்CountrySri LankaLanguageTamilGenreHistoryPublisherBatticaloa District Cultural BoardPublication date1962PagesXII + 128 + 9 Mattakkalappu Maanmiyam (Tamil: மட்டக்களப்பு மான்மியம்; The Glory of Batticaloa) is a Tamil language historical book concerning the history of Batticaloa.[1] It w...

 

Melvyn DouglasDouglas sekitar tahun 1939LahirMelvyn Edouard Hesselberg(1901-04-05)5 April 1901Macon, Georgia, ASMeninggal4 Agustus 1981(1981-08-04) (umur 80)New York City, New York, AS.PekerjaanAktor, PenyanyiTahun aktif1927–1981Suami/istriRosalind Hightower (1925–1930; bercerai; 1 putra)Helen Gahagan (1931–1980; kematiannya; 1 putra, 1 putri) Melvyn Edouard Hesselberg (5 April 1901 – 4 Agustus 1981), yang lebih dikenal dengan sebutan Melvyn Douglas, adalah se...

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

سليمان كشك معلومات شخصية الميلاد 7 مايو 1994 (العمر 29 سنة)بنزرت، تونس الطول 1.82 م (5 قدم 11 1⁄2 بوصة) مركز اللعب ظهير أيسر الجنسية تونس  معلومات النادي النادي الحالي الملعب التونسي المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2011–2017 النادي الرياضي البنزرتي 75 (1) 2017–2018 النا...

 

American legislative district Not to be confused with Massachusetts Senate's Norfolk, Bristol and Middlesex district. Map of Massachusetts Senate's Norfolk, Plymouth and Bristol district, based on the 2020 United States census. Massachusetts Senate's Norfolk, Plymouth and Bristol district is one of 40 legislative districts of the Massachusetts Senate.[1] It covers portions of Bristol, Plymouth, and Norfolk counties.[2] The district, previously known as the Norfolk, Bristol and...

 

Porte Saint-Denis Porte Saint-Denis adalah monumen Paris yang terletak di arondisemen ke-10, di lokasi salah satu gerbang Tembok Charles V, salah satu bekas tembok kota Paris. Itu terletak di persimpangan Rue Saint-Denis dilanjutkan oleh Rue du Faubourg Saint-Denis, dengan Boulevard de Bonne-Nouvelle dan Boulevard Saint-Denis.[1] Catatan ^ La Porte Saint Denis lbsPariwisata di ParisLandmark Arc de Triomphe Arc de Triomphe du Carrousel Arènes de Lutèce Bourse Katakomba Conciergerie M...

У этого термина существуют и другие значения, см. Гарпун (значения). Гарпун из кости азильской культуры. 12000—9500 л. до н. э. Эскимосские гарпуны. Лабрадор, Канада, 1911 г. Гарпу́н (от нидерл. harpoen) — метательное оружие в виде копья с зазубренным наконечником для охот...

 

You can help expand this article with text translated from the corresponding article in Persian. (November 2014) Click [show] for important translation instructions. View a machine-translated version of the Persian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wik...

 

Weightlifting at the Olympics Women's 63 kgat the Games of the XXVII OlympiadVenueSydney Convention and Exhibition CentreDate19 SeptemberCompetitors9 from 9 nationsMedalists Chen Xiaomin  China Valentina Popova  Russia Ioanna Chatziioannou  Greece2004 → Weightlifting at the2000 Summer OlympicsMenWomen56 kg48 kg62 kg53 kg69 kg58 kg77 kg63 kg85 kg69 kg94 kg75 kg105 kg+75 kg+105 kgvte Main article: Weightlifting at the 2000 Summer Olympics The women's 63 kilog...

Halaman ini berisi artikel tentang penulis. Untuk pemimpin Xiongnu, lihat Modu Chanyu. Ini adalah nama Tionghoa; marganya adalah Shen. Mao Dun茅盾Mao Dun seperti digambarkan dalam The Most Recent Biographies of Important Chinese People Menteri Kebudayaan RRTMasa jabatan21 Oktober 1949 – Januari 1965Perdana MenteriZhou EnlaiPenggantiLu DingyiKetua Asosiasi Penulis TiongkokMasa jabatan23 Juli 1949 – 27 Maret 1981PenggantiBa Jin Informasi pribadiLahir(1896-07-04)4 Juli 18...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Qian River – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this message) This article is about the river in Guangxi. For the river in Zhejiang, see Qiantang River. River in ChinaQian JiangQian River (left) at the confluence with the Yu Jia...

 

Comics character RomaUncanny X-Men #462, art by Alan Davis.Publication informationPublisherMarvel ComicsFirst appearanceCaptain Britain #1 (Oct. 1976)Created byChris ClaremontHerb TrimpeFred KidaIn-story informationAlter egoRomaSpeciesHumanTeam affiliationsSuperior to the Captain Britain CorpsNotable aliasesLady of the Northern Skies, the Goddess of the Northern SkiesAbilitiesImmortalityMystic powers Energy manipulation Roma is a fictional character appearing in American comic books publishe...

Species of bird Blyth's tragopan Conservation status Vulnerable  (IUCN 3.1)[1] CITES Appendix I (CITES)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Galliformes Family: Phasianidae Genus: Tragopan Species: T. blythii Binomial name Tragopan blythii(Jerdon, 1870) Blyth's tragopan (Tragopan blythii) or the grey-bellied tragopan, is a pheasant that is a vulnerable species. The common name commemorates Edward Bl...

 

Menteri Besar Pahangمنتري بسار ڤهڠPetahanaWan Rosdy Wan Ismailsejak 15 Mei 2018GelarYang Amat Berhormat(resmi)StatusKepala pemerintahanAnggotaDewan Eksekutif Negara Bagian PahangAtasanDewan Undangan Negeri PahangKediamanJalan Telok Sisek, 25000 Kuantan, PahangKantorWisma Sri Pahang, 25502 Kuantan, PahangDitunjuk olehAl-Sultan Abdullahsebagai Sultan PahangMasa jabatan5 tahunPejabat perdanaMahmud MatDibentuk1 Februari 1948; 76 tahun lalu (1948-02-01)Situs webwww.pahang.gov...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Approach album – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) 2006 studio album by Von Hertzen BrothersApproachStudio album by Von Hertzen BrothersReleased17 May 2006 (Finland)RecordedMD St...

Marker that usually commemorates a site where a person died This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Roadside memorial – news · newspapers · books · scholar · JSTOR (March 2014) (Learn how and when to remove this message) Roadside memorial, Virginia, United States A roadside memorial is a marker that ...

 

Trong toán học, các số nguyên a và b được gọi là nguyên tố cùng nhau (tiếng Anh: coprime hoặc relatively prime) nếu chúng có Ước số chung lớn nhất là 1.[1][2] Ví dụ 5 và 2 là nguyên tố cùng nhau vì chúng có ước chung lớn nhất là 1, nhưng 6 và 27 không nguyên tố cùng nhau vì chúng có ước chung lớn nhất là 3. Số 1 là nguyên tố cùng nhau với mọi số nguyên. Nhưng cũng có những trường h...