Non-relativistic gravitational fields

Within general relativity (GR), Einstein's relativistic gravity, the gravitational field is described by the 10-component metric tensor. However, in Newtonian gravity, which is a limit of GR, the gravitational field is described by a single component Newtonian gravitational potential. This raises the question to identify the Newtonian potential within the metric, and to identify the physical interpretation of the remaining 9 fields.

The definition of the non-relativistic gravitational fields provides the answer to this question, and thereby describes the image of the metric tensor in Newtonian physics. These fields are not strictly non-relativistic. Rather, they apply to the non-relativistic (or post-Newtonian) limit of GR.

A reader who is familiar with electromagnetism (EM) will benefit from the following analogy. In EM, one is familiar with the electrostatic potential and the magnetic vector potential . Together, they combine into the 4-vector potential , which is compatible with relativity. This relation can be thought to represent the non-relativistic decomposition of the electromagnetic 4-vector potential. Indeed, a system of point-particle charges moving slowly with respect to the speed of light may be studied in an expansion in , where is a typical velocity and is the speed of light. This expansion is known as the post-Coulombic expansion. Within this expansion, contributes to the two-body potential already at 0th order, while contributes only from the 1st order and onward, since it couples to electric currents and hence the associated potential is proportional to .

Definition

In the non-relativistic limit, of weak gravity and non-relativistic velocities, general relativity reduces to Newtonian gravity. Going beyond the strict limit, corrections can be organized into a perturbation theory known as the post-Newtonian expansion. As part of that, the metric gravitational field , is redefined and decomposed into the non-relativistic gravitational (NRG) fields  : is the Newtonian potential, is known as the gravito-magnetic vector potential, and finally is a 3d symmetric tensor known as the spatial metric perturbation. The field redefinition is given by[1][further explanation needed] In components, this is equivalent to where .

Counting components, has 10, while has 1, has 3 and finally has 6. Hence, in terms of components, the decomposition reads .

Motivation for definition

In the post-Newtonian limit, bodies move slowly compared with the speed of light, and hence the gravitational field is also slowly changing. Approximating the fields to be time independent, the Kaluza-Klein reduction (KK) was adapted to apply to the time direction. Recall that in its original context, the KK reduction applies to fields which are independent of a compact spatial fourth direction. In short, the NRG decomposition is a Kaluza-Klein reduction over time.

The definition was essentially introduced in,[1] interpreted in the context of the post-Newtonian expansion in,[2] and finally the normalization of was changed in [3] to improve the analogy between a spinning object and a magnetic dipole.

Relation with standard approximations

By definition, the post-Newtonian expansion assumes a weak field approximation. Within the first order perturbation to the metric , where is the Minkowski metric, we find the standard weak field decomposition into a scalar, vector and tensor , which is similar to the non-relativistic gravitational (NRG) fields. The importance of the NRG fields is that they provide a non-linear extension, thereby facilitating computation at higher orders in the weak field / post-Newtonian expansion. Summarizing, the NRG fields are adapted for higher order post-Newtonian expansion.

Physical interpretation

The scalar field is interpreted as the Newtonian gravitational potential.

The vector field is interpreted as the gravito-magnetic vector potential. It is magnetic-like, or analogous to the magnetic vector potential in electromagnetism (EM). In particular, it is sourced by massive currents (the analogue of charge currents in EM), namely by momentum.

As a result, the gravito-magnetic vector potential is responsible for current-current interaction, which appears at the 1st post-Newtonian order. In particular, it generates a repulsive contribution to the force between parallel massive currents. However, this repulsion is overturned by the standard Newtonian gravitational attraction, since in gravity a current "wire" must always be massive (charged) -- unlike EM.

A spinning object is the analogue of an electromagnetic current loop, which forms as magnetic dipole, and as such it creates a magnetic-like dipole field in .

The symmetric tensor is known as the spatial metric perturbation. From the 2nd post-Newtonian order and onward, it must be accounted for. If one restricts to the 1st post-Newtonian order, can be ignored, and relativistic gravity is described by the , fields. Hence it becomes a strong analogue of electromagnetism, an analogy known as gravitoelectromagnetism.

Applications and generalizations

The two body problem in general relativity holds both intrinsic interest and observational, astrophysical interest. In particular, it is used to describe the motion of binary compact objects, which are the sources for gravitational waves. As such, the study of this problem is essential for both detection and interpretation of gravitational waves.

Within this two body problem, the effects of GR are captured by the two body effective potential, which is expanded within the post-Newtonian approximation. Non-relativistic gravitational fields were found to economize the determination of this two body effective potential.[4][5][6]

Generalizations

In higher dimensions, with an arbitrary spacetime dimension , the definition of non-relativistic gravitational fields generalizes into [1]

Substituting reproduces the standard 4d definition above.

See also

References

  1. ^ a b c Kol, Barak; Smolkin, Michael (2008-03-28). "Classical Effective Field Theory and Caged Black Holes". Physical Review D. 77 (6). eq. (2.6): 064033. arXiv:0712.2822. Bibcode:2008PhRvD..77f4033K. doi:10.1103/PhysRevD.77.064033. ISSN 1550-7998. S2CID 16299713.
  2. ^ Kol, Barak; Smolkin, Michael (2008-07-21). "Non-Relativistic Gravitation: From Newton to Einstein and Back". Classical and Quantum Gravity. 25 (14): 145011. arXiv:0712.4116. Bibcode:2008CQGra..25n5011K. doi:10.1088/0264-9381/25/14/145011. ISSN 0264-9381. S2CID 119216835.
  3. ^ Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (2013). "Theory of post-Newtonian radiation and reaction". Phys. Rev. D. 88 (10). eq. (A.10): 104037. arXiv:1305.6930. Bibcode:2013PhRvD..88j4037B. doi:10.1103/PhysRevD.88.104037. S2CID 119170985.
  4. ^ Gilmore, James B.; Ross, Andreas (2008-12-30). "Effective field theory calculation of second post-Newtonian binary dynamics". Physical Review D. 78 (12): 124021. arXiv:0810.1328. Bibcode:2008PhRvD..78l4021G. doi:10.1103/PhysRevD.78.124021. ISSN 1550-7998. S2CID 119271832.
  5. ^ Foffa, S.; Sturani, R. (2011-08-09). "Effective field theory calculation of conservative binary dynamics at third post-Newtonian order". Physical Review D. 84 (4): 044031. arXiv:1104.1122. Bibcode:2011PhRvD..84d4031F. doi:10.1103/PhysRevD.84.044031. ISSN 1550-7998. S2CID 119234031.
  6. ^ Blanchet, Luc (2014). "Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries". Living Reviews in Relativity. 17 (1): 2. arXiv:1310.1528. Bibcode:2014LRR....17....2B. doi:10.12942/lrr-2014-2. ISSN 2367-3613. PMC 5256563. PMID 28179846.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. BiBi JonesLahirVicki Chase23 Juli 1991 (umur 32)Oklahoma City, Oklahoma, Amerika SerikatKebangsaanAmerikaNama lainBiBi Jones, Britney BethTinggi5 ft 5 in (1,65 m)Berat110 pon (50 kg) BiBi Jones (lahir 5 Februari 1985...

 

 

The Fearless Hyena Part IIUS DVD coverSutradaraChan Chuen Lo WeiProduserLo Wei Hsu Li HwaDitulis olehLo WeiPemeranJackie Chan Chan Hui Lou Dean Shek James Tien Austin WaiDistributorLo Wei Motion Picture CompanyTanggal rilis 1983 (1983) Durasi94 menitNegaraHong KongBahasaCantonesePrekuelFearless HyenaIMDbInformasi di IMDbAMGProfil All Movie Guide Fearless Hyena Part II (Hanzi tradisional: 龍騰虎躍) adalah sebuah film aksi laga dari Hong Kong buatan tahun 1983yang menampilkan Jackie Ch...

 

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Sith – berita · surat kabar · buku...

American college basketball season 2023–24 Rice Owls men's basketballConferenceAmerican Athletic ConferenceRecord11–21 (5–13 AAC)Head coachScott Pera (7th season)Assistant coaches Van Green Greg Howell Russ Pennell Home arenaTudor FieldhouseSeasons← 2022–232024–25 → 2023–24 American Athletic Conference men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT South Florida 16 – 2   .889 25 – 8 ...

 

 

Mountain range in Thailand and Malaysia This article is about the mountain range. For other uses, see Titiwangsa (disambiguation). Titiwangsa MountainsBanjaran Titiwangsa/Besar (Malay)ทิวเขาสันกาลาคีรี (Thai)蒂迪旺沙山脉 (Chinese)蒂迪旺沙山脈 (Chinese)The view of the Titiwangsa Mountains near Mount Suku.Highest pointPeakGunung KorbuElevation2,183 m (7,162 ft)DimensionsLength480 km (300 mi) NW/SEWidth120 km (75...

 

 

Pour les articles homonymes, voir Hennequin et Émile Hennequin. Cet article est une ébauche concernant une personnalité française. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Émile HennequinÉmile Hennequin, dans les années 1940 (collections de l'Identité judiciaire de Paris).BiographieNaissance 6 décembre 188718e arrondissement de ParisDécès 7 octobre 1977 (à 89 ans)Boulogne-BillancourtNom d...

Engkau... Segalanya BagikuAlbum studio karya Dian PieseshaDirilis1986GenrepopLabelJK RecordsProduserJudhi KristianthoKronologi Dian Piesesha Tak Ingin Sendiri (1984)String Module Error: Match not foundString Module Error: Match not found Engkau... Segalanya Bagiku (1986) Mengapa Tak Pernah Jujur (1987)String Module Error: Match not foundString Module Error: Match not found Engkau... Segalanya Bagiku merupakan sebuah album musik ketujuh milik penyanyi senior Indonesia, Dian Piesesha. Album...

 

 

Sporting event delegationGreece at the1998 Winter OlympicsIOC codeGRENOCHellenic Olympic CommitteeWebsitewww.hoc.gr (in Greek and English)in NaganoCompetitors13 (10 men, 3 women) in 6 sportsFlag bearer Vasilios Dimitriadis (alpine skiing)Medals Gold 0 Silver 0 Bronze 0 Total 0 Winter Olympics appearances (overview)193619481952195619601964196819721976198019841988199219941998200220062010201420182022 Greece competed at the 1998 Winter Olympics in Nagano, Japan. Alpine skiing Main artic...

 

 

Pour les articles homonymes, voir Enders. René EndersRené Enders en 2012InformationsNaissance 13 février 1987 (37 ans)Zeulenroda-TriebesNationalité allemandeSpécialité PistardDistinction Silbernes LorbeerblattPrincipales victoires Champion du monde de vitesse par équipes (2011 et 2013)modifier - modifier le code - modifier Wikidata Podium de la vitesse par équipes lors des championnats du monde 2011 (de gauche à droite : Stefan Nimke, René Enders, Kévin Sireau, Maximilia...

2010 studio album by PoisonblackOf Rust and BonesStudio album by PoisonblackReleased22 March 2010RecordedAugust–September 2009StudioNEOstudio, Oulu and Matrixtor & Coalhole Studio, HämeenlinnaGenreHeavy metal, gothic metalLabelCentury MediaProducerHiili HiilesmaaPoisonblack chronology A Dead Heavy Day(2008) Of Rust and Bones(2010) Drive(2011) Of Rust and Bones is the fourth studio album by the Finnish gothic metal band Poisonblack. It was released on 22 March 2010 in Europe by...

 

 

Gadung tiongkok Buah Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Monokotil Ordo: Liliales Famili: Smilacaceae Genus: Smilax Spesies: S.china Nama binomial Smilax china Gadung tiongkok (Smilax china) adalah spesies tumbuhan yang berasal dari genus Smilax. Deskripsi Gadung tiongkok adalah tumbuhan tahunan yang bertumbuh merambat dan berbatang bulat, juga keras dikarenakan durinya yang tajam.[1] Referensi ^ Dalimartha 2009, hlm. 26. Bibliografi...

 

 

Historic site in South Dakota, USA United States historic placeMadison, Pap, CabinFormerly listed on the U.S. National Register of Historic Places Show map of South DakotaShow map of the United StatesLocationBounded by W. Main St., St. Joseph St. & West Blvd., Rapid City, South DakotaCoordinates44°05′02″N 103°14′17″W / 44.08389°N 103.23806°W / 44.08389; -103.23806 (Madison, Pap, Cabin)Arealess than one acreBuilt1876 (1876)ArchitectPap ...

لاثبيري كنيسة لاثبيري الإحداثيات 52°06′00″N 0°43′16″W / 52.0999°N 0.7211°W / 52.0999; -0.7211   [1] تقسيم إداري  البلد المملكة المتحدة[2]  معلومات أخرى MK16  رمز الهاتف 01908  رمز جيونيمز 2644826  تعديل مصدري - تعديل   لاثبيري (بالإنجليزية: Lathbury)‏ هي قرية وأبرشية مد�...

 

 

Women's Downhillat the XII Olympic Winter GamesAlpine skiingVenueAxamer LizumDateFebruary 8Competitors38 from 15 nationsWinning time1:46.16Medalists Rosi Mittermaier  West Germany Brigitte Totschnig  Austria Cindy Nelson  United States← 19721980 → Alpine skiing at the1976 Winter OlympicsDownhillmenwomenGiant slalommenwomenSlalommenwomenvte Women's DownhillLocationAxamer LizumVertical   700 m (2,297 ft)Top elevation2,310 ...

 

 

1927 film She's a SheikLobby cardDirected byClarence BadgerWritten byJohn McDermott (story)Lloyd Corrigan (scenario)Grover Jones (scenario)George Marion, Jr. (intertitles)Produced byAdolph ZukorJesse LaskyStarringBebe DanielsCinematographyJ. Roy HuntDistributed byParamount PicturesRelease date November 12, 1927 (1927-11-12) Running time6 reels, (between 5,931 ft. & 6,015 ft.)CountryUnited StatesLanguageSilent (English intertitles) She's a Sheik is a 1927 American silent com...

Governo Moro II Stato Italia Presidente del ConsiglioAldo Moro(DC) CoalizioneDC, PSI, PSDI, PRI LegislaturaIV Legislatura Giuramento23 luglio 1964 Dimissioni21 gennaio 1966 Governo successivoMoro III24 febbraio 1966 Moro I Moro III Il Governo Moro II è stato il ventesimo esecutivo della Repubblica Italiana, il terzo della IV legislatura. È rimasto in carica dal 23 luglio 1964[1][2][3] al 24 febbraio 1966[4] per un totale di 581 giorni, ovvero 1 anno, 7 m...

 

 

Architectural element Multifoil arch in the Aljafería, Zaragoza, Spain A multifoil arch (or polyfoil arch), also known as a cusped arch,[1][2] polylobed arch,[3][4] or scalloped arch,[5] is an arch characterized by multiple circular arcs or leaf shapes (called foils, lobes, or cusps) that are cut into its interior profile or intrados.[2][1][6][7] The term foil comes from the old French word for leaf. A specific number of...

 

 

Canadian actor and musician (born 1964) Keanu redirects here. For other uses, see Keanu (disambiguation). Keanu ReevesReeves at Primavera Sound 2024BornKeanu Charles Reeves (1964-09-02) September 2, 1964 (age 60)Beirut, LebanonCitizenshipCanadaOccupations Actor musician writer director producer Years active1984–presentPartnersJennifer Syme (1998–2000, 2001; her death)Alexandra Grant (c. 2018–present)[a]Children1[b]AwardsFull listMusical careerGenresRockIn...

Medical conditionReticular dysgenesisOther namesAK2 deficiency, Congenital aleukocytosis, De Vaal disease, Generalized hematopoietic hypoplasia, SCID with leukopeniaReticular dysgenesis is inherited in an autosomal recessive mannerSpecialtyHematology  Reticular dysgenesis (RD) is a rare, inherited autosomal recessive disease that results in immunodeficiency.[1] Individuals with RD have mutations in both copies of the AK2 gene.[1] Mutations in this gene lead to absence of ...

 

 

هيو جاكمان (بالإنجليزية: Hugh Jackman)‏    معلومات شخصية اسم الولادة (بالإنجليزية: Hugh Michael Jackman)‏  الميلاد 12 أكتوبر 1968 (56 سنة)  سيدني  الإقامة نيويورك  مواطنة أستراليا المملكة المتحدة[1]  العرق أستراليون اسكتلنديون  [لغات أخرى]‏[2]،  وأستراليون يو...