No-slip condition

In fluid dynamics, the no-slip condition is a boundary condition which enforces that at a solid boundary, a viscous fluid attains zero bulk velocity. This boundary condition was first proposed by Osborne Reynolds, who observed this behaviour while performing his influential pipe flow experiments.[1] The form of this boundary condition is an example of a Dirichlet boundary condition.

In the majority of fluid flows relevant to fluids engineering, the no-slip condition is generally utilised at solid boundaries.[2] This condition often fails for systems which exhibit non-Newtonian behaviour. Fluids which this condition fails includes common food-stuffs which contain a high fat content, such as mayonnaise or melted cheese.[3]

Physical justification

The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid) boundary conditions. However, by the start of the 20th century it became generally accepted that slip, if it did exist, was too small to be measured. The stagnant layer was deemed too thin, and the partial slip was considered to have negligible effect on the macroscopic scale.[4]

While not derived from first principles, two possible mechanisms have been offered to explain the no-slip behaviour, with one or the other being dominant under different conditions.[5] The first contends that the surface roughness is responsible for bringing the fluid to rest through viscous dissipation past the surface irregularities. The second is related to the attraction of fluid molecules to the surface. Particles close to a surface do not move along with a flow when adhesion is stronger than cohesion. At the fluid-solid interface, the force of attraction between the fluid particles and solid particles (adhesive forces) is greater than that between the fluid particles (cohesive forces). This force imbalance causes the fluid velocity to be zero adjacent to the solid surface, with the velocity approaching that of the stream as distance from the surface increases.

When a fluid is at rest, its molecules move constantly with a random velocity. When the fluid begins to flow, an average flow velocity, sometimes called the bulk velocity, is added to the random motion. At the boundary between the fluid and a solid surface, the attraction between the fluid molecules and the surface atoms is strong enough to slow the bulk velocity to zero. Consequently, the bulk velocity of the fluid decreases from its value away from the wall to zero at the wall.[6]


Slip behaviour

As the no-slip condition was an empirical observation, there are physical scenarios in which it fails. For sufficiently rarefied flows, including flows of high altitude atmospheric gases[7] and for microscale flows, the no-slip condition is inaccurate.[8] For such examples, this change is driven by an increasing Knudsen number, which implies increasing rarefaction, and gradual failure of the continuum approximation. The first-order expression, which is often used to model fluid slip, is expressed as (also known as the Navier slip boundary condition) where is the coordinate normal to the wall, is the mean free path and is some constant known as the slip coefficient, which is approximately of order 1. Alternatively, one may introduce as the slip length.[9] Some highly hydrophobic surfaces, such as carbon nanotubes with added radicals, have also been observed to have a nonzero but nanoscale slip length.[10]

While the no-slip condition is used almost universally in modeling of viscous flows, it is sometimes neglected in favor of the 'no-penetration condition' (where the fluid velocity normal to the wall is set to the wall velocity in this direction, but the fluid velocity parallel to the wall is unrestricted) in elementary analyses of inviscid flow, where the effect of boundary layers is neglected.

The no-slip condition poses a problem in viscous flow theory at contact lines: places where an interface between two fluids meets a solid boundary. Here, the no-slip boundary condition implies that the position of the contact line does not move, which is not observed in reality. Analysis of a moving contact line with the no slip condition results in infinite stresses that can't be integrated over. The rate of movement of the contact line is believed to be dependent on the angle the contact line makes with the solid boundary, but the mechanism behind this is not yet fully understood.

See also

References

  1. ^ Reynolds, Osbourne. (1876). "I. On the force caused by the communication of heat between a surface and a gas, and on a new photometer". Proceedings of the Royal Society of London. 24 (164): 387–391.
  2. ^ Day, Michael A. (2004). "The no-slip condition of fluid dynamics". Erkenntnis. 33 (3): 285–296. doi:10.1007/BF00717588. S2CID 55186899.
  3. ^ Campanella, O. H.; Peleg, M. (1987). "Squeezing Flow Viscosimetry of Peanut Butter". Journal of Food Science. 52: 180–184. doi:10.1111/j.1365-2621.1987.tb14000.x.
  4. ^ Neto, Chiara; Evans, Drew R; Bonaccurso, Elmar; Butt, Hans-Jürgen; Craig, Vincent S J (2005). "Boundary slip in Newtonian liquids: a review of experimental studies". Rep. Prog. Phys. 68 (12): 2859. Bibcode:2005RPPh...68.2859N. doi:10.1088/0034-4885/68/12/R05.
  5. ^ Zhu, Yingxi; Granick, Steve (2002). "Limits of the Hydrodynamic No-Slip Boundary Condition". Physical Review Letters. 88 (10). American Physical Society: 106102 (1-4). Bibcode:2002PhRvL..88j6102Z. doi:10.1103/PhysRevLett.88.106102.
  6. ^ "Flows With Friction". swh.princeton.edu. Retrieved 2024-05-27.
  7. ^ Schamberg, R. (1947). The fundamental differential equations and the boundary conditions for high speed slip-flow, and their application to several specific problems (Thesis).
  8. ^ Arkilic, E.B.; Breuer, K.S.; Schmidt, M.A. (2001). "Mass flow and tangential momentum accommodation in silicon micromachined channels". Journal of Fluid Mechanics. 437: 29–43. doi:10.1111/j.1365-2621.1987.tb14000.x.
  9. ^ David L. Morris; Lawrence Hannon; Alejandro L. Garcia (1992). "Slip length in a dilute gas". Physical Review A. 46 (8): 5279–5281. Bibcode:1992PhRvA..46.5279M. doi:10.1103/PhysRevA.46.5279. PMID 9908755.
  10. ^ Kim Kristiansen; Signe Kjelstrup (2021). "Particle flow through a hydrophobic nanopore: Effect of long-ranged wall–fluid repulsion on transport coefficients". Physics of Fluids. 33 (10). Bibcode:2021PhFl...33j2001K. doi:10.1063/5.0066433.

Read other articles:

GS Caltex Seoul KixxNama lengkapGS Caltex Seoul Kixx Volleyball TeamNama pendekGS CaltexDidirikan1970; 54 tahun lalu (1970)ArenaJangchung ArenaSeoul, Korea Selatan(Kapasitas: 4,507)PemilikGS CaltexManajer Heo Se-hongPelatih Cha Sang-hyunKapten Kang So-hwiLigaV-League2022−23Musim reguler: ke-5Pasca musim: Tidak masuk kualifikasiSitus webSitus resmi klubSeragam Kandang Tandang GS Caltex Seoul Kixx (Korea: GS칼텍스 서울 Kixxcode: ko is deprecated ) adalah sebuah klub bola voli profes...

 

 

Basilika Tempat Ziarah Nasional Bunda dari KarmelBasilika Minor Tempat Ziarah Nasional Bunda dari KarmelSpanyol: Templo Votivo de Maipúcode: es is deprecated Basilika Tempat Ziarah Nasional Bunda dari KarmelLokasiMaipúNegara ChiliDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktif Basilika Tempat Ziarah Nasional Bunda dari Karmel (Spanyol: Templo Votivo de Maipúcode: es is deprecated ) adalah sebuah gereja basilika minor Katolik yang terletak di Maipú, C...

 

 

العلاقات الأرجنتينية الباهاماسية الأرجنتين باهاماس   الأرجنتين   باهاماس تعديل مصدري - تعديل   العلاقات الأرجنتينية الباهاماسية هي العلاقات الثنائية التي تجمع بين الأرجنتين وباهاماس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية �...

2010 single by Artists for HaitiSomos El Mundo 25 Por HaitiSingle by Artists for HaitiReleasedMarch 1, 2010 (2010-03-01)RecordedFebruary 19, 2010 (2010-02-19)GenreLatin popR&BLength6:49Label Univision Music Group El Cartel Records Songwriter(s) Michael Jackson Daddy Yankee Lionel Richie Emilio Estefan Gloria Estefan Producer(s) Emilio Estefan (exec.) Quincy Jones Music videoSomos El Mundo Por Haiti on YouTube Somos El Mundo 25 Por Haiti is a 2010 song and ch...

 

 

Association football rivalry M69 DerbyM69 derby at the Ricoh Arena on 23 February 2008, which Coventry won 2–0.LocationCoventry/Leicester (England)TeamsCoventry CityLeicester CityFirst meetingLeicester City 1–0 Coventry City1919–20 Second Division(27 September 1919)[1]Latest meetingCoventry City 3–1 Leicester City2023–24 EFL Championship(13 January 2024)Next meetingTBDStadiumsCoventry Building Society Arena (Coventry City)King Power Stadium (Leicester City)StatisticsMeetings...

 

 

Indonesian politician (born 1965) Ratna Ani LestariRegent of BanyuwangiIn office20 October 2005 – 20 October 2010Preceded bySamsul HadiSucceeded byAbdullah Azwar AnasMember of Jembrana Regency CouncilIn office2004–2005 Personal detailsBorn (1965-12-06) 6 December 1965 (age 58)Banten, IndonesiaSpouseI Gede Winasa (divorced) Ratna Ani Lestari (born 6 December 1965) is an Indonesian former politician who was the regent of Banyuwangi Regency. Serving between 2005 and 2010, she w...

SMP Terbuka 9 DepokSegar IX SchoolInformasiDidirikan29 November 2019JenisSwastaAkreditasiA[1]Nomor Statistik Sekolah201022901087Nomor Pokok Sekolah Nasional20229087Kepala SekolahPaeran, S.PdJumlah kelasVII: 10, VIII: 10, IX: 10Rentang kelasVII, VIII, IXKurikulumKurikulum 2013StatusSekolah Standar NasionalAlamatLokasiJalan Raya Cipayung Jaya №27, Cipayung Jaya, Kec. Cipayung, Depok, Jawa Barat, IndonesiaTel./Faks.(021) 7791103Situs webSitus ResmiSurelsmpterbuka9depok@y...

 

 

Titik ekstrem wilayah Jepang ditandai di peta Titik ekstrem di Jepang adalah titik koordinat terjauh yang berada di utara, selatan, timur dan barat di dalam wilayah Jepang, termasuk juga titik tertinggi dan terendah di negara tersebut. Titik paling utara wilayah Jepang saat ini masih dalam perdebatan, dikarenakan Jepang menganggap titik paling utara wilayahnya berada di Iturup, sebuah pulau yang secara de facto dikuasai oleh Rusia. Titik paling selatan Jepang adalah Okinotorishima; paling bar...

 

 

1959 license plates in the United States Vehicle registration plates of the United States by year Vehicle registration plates of the United States for 1958 Events of 1959 Vehicle registration plates of the United States for 1960 Each of the 49 states of the United States of America plus several of its territories and the District of Columbia issued individual passenger license plates for the year 1959.[1][2][3][4] Passenger baseplates Passenger  car&#...

Flag carrier of Malta Not to be confused with Malta Air or Air Malta. KM Malta Airlines IATA ICAO Callsign KM KMM SKY KNIGHT Founded2 October 2023; 7 months ago (2023-10-02)(preceded by Air Malta)Commenced operations31 March 2024; 39 days ago (2024-03-31)AOC #MT-80HubsMalta International AirportFleet size7Destinations17Parent companyGovernment of MaltaHeadquartersLuqa, MaltaWebsitewww.kmmaltairlines.com KM Malta Airlines Ltd is the flag carrier of Malt...

 

 

Forteresse Pierre-et-PaulПетропа́вловская кре́постьLa forteresse donnant sur la NevaPrésentationDestination initiale Forteresse de Pierre le GrandCommémore PaoloStyle Forteresse militaireArchitecte Gaspard-Joseph Lambert 1703 Domenico Trezzini 1706Construction 1703 - 1740Patrimonialité Objet patrimonial culturel d'importance fédérale (d)Site web www.museum.ru/M112LocalisationPays RussieCommune Saint-PétersbourgEmplacement Zayachy Island (en)Coordonnées 59°...

 

 

District in Hokkaidō, Japan The area of Tokachi District in Tokachi SubprefectureThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tokachi District, Hokkaido – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) Tokachi District (十勝郡, Tokachi-gun) is a ...

Efrem orang Siria. Efrem orang Siria adalah seorang teolog sekaligus sastrawan dan orator.[1] Ia berasal dari Gereja Purba di Siria.[1] Ia terutama dihormati dalam Gereja Ortodoks Siria, dan terhitung sebagai Venerable Father (Bapa Yang Dimuliakan, yaitu seorang biarawan yang dihormati sebagai orang kudus) dalam Gereja Ortodoks Timur. Hari peringatannya adalah tanggal 28 Januari dan pada hari Sabtu Venerable Fathers. Ia dinyatakan sebagai seorang Pujangga Gereja dalam Gereja K...

 

 

Chemical compound GoserelinClinical dataTrade namesZoladex, othersOther namesD-Ser(But)6Azgly10-GnRHAHFS/Drugs.comMonographMedlinePlusa601002Routes ofadministrationImplantDrug classGnRH analogue; GnRH agonist; AntigonadotropinATC codeL02AE03 (WHO) Legal statusLegal status CA: ℞-only[1] In general: ℞ (Prescription only) Pharmacokinetic dataProtein binding27.3%Elimination half-life4–5 hoursIdentifiers IUPAC name N-(21-((1H-indol-3-yl)methyl)-1,1-diamino-1...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. K2-299bPenemuanTanggal penemuan2014Metode deteksitransit K2-299b adalah sebuah planet luar surya yang terletak sekitar 1219.21±16.28 tahun cahaya dari Bumi. Planet ini ditemukan pada tahun 2019 dengan menggunakan metode transit. Referensi NASA E...

Chemical compound VamoroloneClinical dataTrade namesAgamreeOther namesVBP; VBP-15; 17α,21-Dihydroxy-16α-methylpregna-1,4,9(11)-triene-3,20-dioneAHFS/Drugs.comMonographMedlinePlusa624005License data US DailyMed: Vamorolone Routes ofadministrationBy mouthATC codeH02AB18 (WHO) Legal statusLegal status US: ℞-only[1] EU: Rx-only[2][3] Identifiers IUPAC name (8S,10S,13S,14S,16R,17R)-17-Hydroxy-17-(2-hydroxyacetyl)-10,13,16-trimethyl-7,8,12,1...

 

 

Place in Imereti, GeorgiaSamtredia სამტრედიაSamtredia TheatreSamtrediaLocation of Samtredia in GeorgiaShow map of GeorgiaSamtrediaSamtredia (Imereti)Show map of ImeretiCoordinates: 42°09′45″N 42°20′30″E / 42.16250°N 42.34167°E / 42.16250; 42.34167Country Georgia (country)MkhareImeretiDistrictSamtrediaEstablished1921Elevation25 m (82 ft)Population (January 1, 2024)[1] • Total21,063Time zoneUTC+4 (Geor...

 

 

Para otros usos de Aurora, véase Aurora (desambiguación). Islas Aurora Shag Rocks Ubicación geográficaMar Océano Atlántico/ mar de ScotiaContinente América del SurCoordenadas 53°32′51″S 42°01′12″O / -53.5475, -42.02Ubicación administrativaPaís Reino Unido Reino Unido, reclamadas por  Argentina.[1]​División  Islas Georgias del Sur y Sandwich del Sur / Tierra del Fuego, Antártida e Islas del Atlántico Sur.Datos geográficosN.º de isla...

Burgh in South Ayrshire, Scotland This article is about the town in Scotland. For the surname, see Girvan (surname). Burgh in ScotlandGirvanScottish Gaelic: Inbhir GharbhainBurghGirvan Steeple, South Ayrshire.GirvanLocation within South AyrshirePopulation6,330 (2022)[1]DemonymGirvaniteOS grid referenceNX185975• Edinburgh81 mi (130 km)• London323 mi (520 km)Council areaSouth AyrshireLieutenancy areaAyrshire and ArranCountryScot...

 

 

Extinct genus of amphibians LoxommaTemporal range: ~330–306.95 Ma PreꞒ Ꞓ O S D C P T J K Pg N Loxomma allmanni skull cast at the Museum für Naturkunde, Berlin Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Clade: Sarcopterygii Clade: Tetrapodomorpha Family: †Baphetidae Subfamily: †Loxommatinae Genus: †LoxommaHuxley, 1862 Loxomma (meaning “slanting eyes”) is an extinct genus of Loxommatinae and one of the first Carboniferous tetrapods.[...