In this section only finite groups are considered. A monomial group is solvable.[2] Every supersolvable group[3] and every solvable A-group[4] is a monomial group. Factor groups of monomial groups are monomial, but subgroups need not be, since every finite solvable group can be embedded in a monomial group.[5]
The symmetric group is an example of a monomial group that is neither supersolvable nor an A-group. The special linear group is the smallest finite group that is not monomial: since the abelianization of this group has order three, its irreducible characters of degree two are not monomial.
Bray, Henry G.; Deskins, W. E.; Johnson, David; Humphreys, John F.; Puttaswamaiah, B. M.; Venzke, Paul; Walls, Gary L. (1982), Between nilpotent and solvable, Washington, N. J.: Polygonal Publ. House, ISBN978-0-936428-06-2, MR0655785
Taketa, K. (1930), "Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen.", Proceedings of the Imperial Academy (in German), 6 (2): 31–33, doi:10.3792/pia/1195581421