Mollweide's formula

Figure 1 – A triangle. The angles α, β, and γ are respectively opposite the sides a, b, and c.

In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle.[1][2]

A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel [de] in 1746. Thomas Simpson published the now-standard expression in 1748. Karl Mollweide republished the same result in 1808 without citing those predecessors.[3]

It can be used to check the consistency of solutions of triangles.[4]

Let and be the lengths of the three sides of a triangle. Let and be the measures of the angles opposite those three sides respectively. Mollweide's formulas are

Relation to other trigonometric identities

Because in a planar triangle these identities can alternately be written in a form in which they are more clearly a limiting case of Napier's analogies for spherical triangles (this was the form used by Von Oppel),

Dividing one by the other to eliminate results in the law of tangents,

In terms of half-angle tangents alone, Mollweide's formula can be written as

or equivalently

Multiplying the respective sides of these identities gives one half-angle tangent in terms of the three sides,

which becomes the law of cotangents after taking the square root,

where is the semiperimeter.

The identities can also be proven equivalent to the law of sines and law of cosines.

Dual relations

In spherical trigonometry, the law of cosines and derived identities such as Napier's analogies have precise duals swapping central angles measuring the sides and dihedral angles at the vertices. In the infinitesimal limit, the law of cosines for sides reduces to the planar law of cosines and two of Napier's analogies reduce to Mollweide's formulas above. But the law of cosines for angles degenerates to By dividing squared side length by the spherical excess we obtain a non-vanishing ratio, the spherical trigonometry relation:

In the infinitesimal limit, as the half-angle tangents of spherical sides reduce to lengths of planar sides, the half-angle tangent of spherical excess reduces to twice the area of a planar triangle, so on the plane this is:

and likewise for and

As corollaries (multiplying or dividing the above formula in terms of and ) we obtain two dual statements to Mollweide's formulas. The first expresses the area in terms of two sides and the included angle, and the other is the law of sines:

We can alternately express the second formula in a form closer to one of Mollweide's formulas (again the law of tangents):

Cyclic quadrilateral

Any cyclic quadrilateral satisfies a generalization of Mollweide's formula.

A generalization of Mollweide's formula holds for a cyclic quadrilateral Denote the lengths of sides and and angle measures and If is the point of intersection of the diagonals, denote Then:[5]

Several variant formulas can be constructed by substituting based on the cyclic quadrilateral identities,

As rational relationships in terms of half-angle tangents of two adjacent angles, these formulas can be written:

A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as approaches zero, a cyclic quadrilateral converges into a triangle and the formulas above simplify to the analogous triangle formulas. Relabeling to match the convention for triangles, in the limit and

References

  1. ^ Wilczynski, Ernest Julius (1914), Plane Trigonometry and Applications, Allyn and Bacon, p. 102
  2. ^ Sullivan, Michael (1988), Trigonometry, Dellen, p. 243
  3. ^ Bradley, H. C.; Yamanouti, T.; Lovitt, W. V.; Archibald, R. C. (1921), "Geometric Proofs of the Law of Tangents", Discussions, American Mathematical Monthly, 28 (11–12): 440–443, doi:10.1080/00029890.1921.11986081, JSTOR 2972473
  4. ^ Ernest Julius Wilczynski, Plane Trigonometry and Applications, Allyn and Bacon, 1914, page 105
  5. ^ José García, Emmanuel Antonio (2022), "A generalization of Mollweide's formula (rather Newton's)" (PDF), Matinf, 5 (9–10): 19–22, retrieved 29 December 2023

Further reading

Read other articles:

While New York SleepsSebuah poster dari sebuah surat kabar.SutradaraCharles BrabinProduserWilliam FoxDitulis olehCharles BrabinThomas FallonSinematograferGeorge W. LaneBennie MigginsDistributorFox Film CorporationTanggal rilis Desember 1920 (1920-12) Durasi8 rolNegaraAmerika SerikatBahasaBisu (intertitel Inggris) While New York Sleeps adalah sebuah film drama kejahatan Amerika Serikat tahun 1920 yang diproduksi oleh Fox Film Corporation dan disutradarai oleh Charles Brabin, yang merupaka...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Kim Ji-sook Kim Ji-sook (lahir 18 Juli 1990), yang lebih dikenal sebagai Jisook adalah seorang penyanyi dan pemeran asal Korea Selatan. Ia adalah salah satu anggota dari grup vokal perempuan Rainbow.[1] Referensi ^ https://www.soompi.com/2016/...

 

MarIgnatius Ephrem II RahmaniPatriark Antiokhia GerejaGereja Katolik SiriaTakhtaPatriark AntiokhiaAwal masa jabatan9 Oktober 1898Masa jabatan berakhir7 Mei 1929PendahuluIgnatius Behnam II BenniPenerusIgnatius Gabriel I TappuniImamatTahbisan imamApril 1873 (Imam)Tahbisan uskup2 Oktober 1887 (Uskup)oleh George V ShelhotInformasi pribadiNama lahirEphrem RahmaniLahir21 November 1848Mosul, IrakWafat7 Mei 1929(1929-05-07) (umur 80)Cairo, MesirKediamanBeirut Mar Ignatius Dionysius Ephrem I...

Papa Agapito IIAgapito II raffigurato in un affresco di Orazio Samacchini (1565 circa, Sala Regia)129º papa della Chiesa cattolicaElezione27 maggio 946 Insediamento10 giugno 946 Fine pontificato8 novembre 955(9 anni e 165 giorni) Predecessorepapa Marino II Successorepapa Giovanni XII  NascitaRoma, ? MorteRoma, 8 novembre 955 SepolturaBasilica di San Giovanni in Laterano Manuale Agapito II (Roma, ... – Roma, 8 novembre 955) è stato il 129º papa della Chiesa cattolica d...

 

Cet article est une ébauche concernant les Côtes-d'Armor et la mer. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Côte de granit rose La Côte de granit rose. Pays France Région Bretagne Département Côtes-d'Armor Communes Perros-Guirec, Pleumeur-Bodou, Trébeurden, Trégastel Coordonnées géographiques 48° 49′ 23″ N, 3° 32′ 02″ O Étendue d'eau Manche (océan Atla...

 

Brackets L'éditeur en version 1.1 sous le système d'exploitation Ubuntu. Informations Développé par Brackets Première version 2012[1] Dernière version 2.1.3 (31 octobre 2022)[2]2.2.1 (22 mars 2023)[3] Version avancée 2.1.0-prerelease (9 mai 2022)[4] Dépôt github.com/brackets-cont/brackets Assurance qualité Intégration continue État du projet Remplacé par Phoenix Écrit en HTML, feuille de style en cascade et JavaScript Supporte les langages 38 languages Système d'exploitation M...

سماور روسي. السَّماوَر[1][2] (بالروسية: самовар، بالتركية: semaver، بالفارسية: سماور) أو وعاء إعْدَاد الشَّاي[3][4] هو وعاء معدني يستخدم لغلي الماء وتحضير الشاي، يستخدم في روسيا وأوروبا الشرقية وبلدان الشرق الأوسط. وصفه السماور هو حوض ماء معدني بداخله أنبوب اسطوان...

 

King of England from 1413 to 1422 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Henry V of England – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this template message) Henry VMiniature in the Regement of Princes by Thomas Hoccleve, c. 1411–1413King of England...

 

Thánh Cêlestinô VTựu nhiệm5 tháng 7 năm 1294Bãi nhiệm13 tháng 12 năm 1294Tiền nhiệmNicôla IVKế nhiệmBônifaciô VIIIThông tin cá nhânTên khai sinhPietro AngelerioSinh1215Gần Isernia, Vương quốc SicilyMất19 tháng 5 năm 1296Ferentino, Lãnh thổ Giáo hoàngHuy hiệuCác giáo hoàng khác lấy tông hiệu Cêlestinô Cêlestinô V (Latinh: Celestinus V) là vị Giáo hoàng thứ 192 của giáo hội công giáo. Ông đã được giáo hội suy tô...

2019–present protests in Lebanon Not to be confused with October Revolution. This article needs to be updated. Please help update this article to reflect recent events or newly available information. (January 2024) 17 October ProtestsPart of the Second Arab SpringProtesters outside of Riad Al Solh Square in Beirut on 19 October 2019Date17 October 2019 (2019-10-17) – AmbiguousLocationSeveral Cities across LebanonCaused by Austerity Political corruption Interventionism Liquid...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

2012 Total Nonstop Action Wrestling pay-per-view event Final Resolution (2012)Promotional poster featuring Jeff HardyPromotionTotal Nonstop Action WrestlingDateDecember 9, 2012CityOrlando, FloridaVenueImpact ZoneAttendance1,100[1]Tagline(s)Redemption[2]Pay-per-view chronology ← PreviousTurning Point Next →Genesis Final Resolution chronology ← Previous2011 Next →2013 The 2012 Final Resolution was a professional wrestling pay-per-view event produced b...

Ethnic group native to Wales Welshman redirects here. For other uses, see Welshman (disambiguation). Ethnic group Welsh peopleCymryRegions with significant populationsWales 2 million[1](identify as Welsh)United States2 million[2]England610,000[3]Canada475,000 (Includes those of mixed ancestry)[4]Australia126,000[5]Argentina50,000[6]Scotland17,000[7]New Zealand10,000[8]LanguagesWelsh, English, British SignReligionPredominantly Non...

 

匈牙利语人名顺序为先姓后名。本条目中的译名遵从此顺序。 托特考·尚多尔出生1994年7月27日  (29歲)邁澤圖爾 就讀學校Edutus University 職業kayaker  托特考·尚多尔(匈牙利語:Tótka Sándor,1994年7月27日—),匈牙利男子皮划艇运动员。他曾代表匈牙利参加2016年和2020年夏季奥林匹克运动会皮划艇比赛,其中2020年奥运会获得一枚金牌。[1] 参考资料 ^ Sándor...

 

  لمعانٍ أخرى، طالع لي نا (توضيح). لي نا (بالصينية: 李娜)‏  معلومات شخصية الميلاد 26 فبراير 1982 (العمر 42 سنة)ووهان، الصين الطول 1.72 م (5 قدم 7 1⁄2 بوصة) الإقامة ووهان  الجنسية  الصين الوزن 65 كـغ (143 رطل؛ 10.2 ستون) استعمال اليد أيمنية[1]  المدرسة ال�...

GavialRentang fosil: 33.9–0 jtyl PreЄ Є O S D C P T J K Pg N Akhir Eosen – Sekarang Status konservasi Kritis  (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Reptilia Ordo: Crocodilia Famili: Gavialidae Genus: Gavialis Spesies: G. gangeticus Nama binomial Gavialis gangeticus(Gmelin, 1789) Gavial atau gharial (Gavialis gangeticus), dikenal juga sebagai buaya pemakan ikan, adalah anggota ordo crocodilia dari famili Gavialidae, yang habita...

 

Guerre civile népalaise Informations générales Date 1996 - 2006(10 ans) Lieu Népal Issue Accord de paix le 21 novembre 2006, débouchant sur un gouvernement d'Union Nationale dirigé par les maoïstes Belligérants Royaume du NépalSoutenu par : États-Unis Royaume-Uni Inde Parti communiste du Népal (maoïste) Commandants Gyanendra Bir Bikram Shah DevSher Bahadur Deuba Girija Prasad Koirala Krishna Prasad Bhattarai Pushpa Kamal Dahal Baburam Bhattarai Données clés Coordonné...

 

Protein and coding gene in humans TAAR8IdentifiersAliasesTAAR8, GPR102, TA5, TAR5, TRAR5, TaR-5, TaR-8, trace amine associated receptor 8External IDsOMIM: 606927; MGI: 2685995; HomoloGene: 77586; GeneCards: TAAR8; OMA:TAAR8 - orthologsGene location (Human)Chr.Chromosome 6 (human)[1]Band6q23.2Start132,552,693 bp[1]End132,553,721 bp[1]Gene location (Mouse)Chr.Chromosome 10 (mouse)[2]Band10|10 A4Start23,967,158 bp[2]End23,968,192 bp[2]RNA expr...

Alternative to independence used in Spanish colonies in the Americas This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2012) (Learn how and when to remove this message) This ...

 

American philosopher This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Ian Bogost – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message) Ian Bogos...