Molecular self-assembly

AFM image of napthalenetetracarboxylic diimide molecules on silver interacting via hydrogen bonding at 77 K.[1] ("Hydrogen bonds" in the top image are exaggerated by artifacts of the imaging technique.[2][3])
NC-AFM imaging of the molecular self-assembly process of 2-aminoterephthalic acid molecules on calcite(104).[4]
STM image of self-assembled Br4-pyrene molecules on Au(111) surface (top) and its model (bottom; pink spheres are Br atoms).[5]

In chemistry and materials science, molecular self-assembly is the process by which molecules adopt a defined arrangement without guidance or management from an outside source. There are two types of self-assembly: intermolecular and intramolecular. Commonly, the term molecular self-assembly refers to the former, while the latter is more commonly called folding.

Supramolecular systems

Molecular self-assembly is a key concept in supramolecular chemistry.[6][7][8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions. Common examples include the formation of colloids, biomolecular condensates, micelles, vesicles, liquid crystal phases, and Langmuir monolayers by surfactant molecules.[9] Further examples of supramolecular assemblies demonstrate that a variety of different shapes and sizes can be obtained using molecular self-assembly.[10]

Molecular self-assembly allows the construction of challenging molecular topologies. One example is Borromean rings, interlocking rings wherein removal of one ring unlocks each of the other rings. DNA has been used to prepare a molecular analog of Borromean rings.[11] More recently, a similar structure has been prepared using non-biological building blocks.[12]

Biological systems

Molecular self-assembly underlies the construction of biologic macromolecular assemblies and biomolecular condensates in living organisms, and so is crucial to the function of cells. It is exhibited in the self-assembly of lipids to form the membrane, the formation of double helical DNA through hydrogen bonding of the individual strands, and the assembly of proteins to form quaternary structures. Molecular self-assembly of incorrectly folded proteins into insoluble amyloid fibers is responsible for infectious prion-related neurodegenerative diseases. Molecular self-assembly of nanoscale structures plays a role in the growth of the remarkable β-keratin lamellae/setae/spatulae structures used to give geckos the ability to climb walls and adhere to ceilings and rock overhangs.[13][14]

Protein multimers

When multiple copies of a polypeptide encoded by a gene self-assemble to form a complex, this protein structure is referred to as a "multimer".[15] Genes that encode multimer-forming polypeptides appear to be common. When a multimer is formed from polypeptides produced by two different mutant alleles of a particular gene, the mixed multimer may exhibit greater functional activity than the unmixed multimers formed by each of the mutants alone. In such a case, the phenomenon is referred to as intragenic complementation.[16] Jehle pointed out that, when immersed in a liquid and intermingled with other molecules, charge fluctuation forces favor the association of identical molecules as nearest neighbors.[17]

Nanotechnology

Molecular self-assembly is an important aspect of bottom-up approaches to nanotechnology. Using molecular self-assembly, the final (desired) structure is programmed in the shape and functional groups of the molecules. Self-assembly is referred to as a 'bottom-up' manufacturing technique in contrast to a 'top-down' technique such as lithography where the desired final structure is carved from a larger block of matter. In the speculative vision of molecular nanotechnology, microchips of the future might be made by molecular self-assembly. An advantage to constructing nanostructure using molecular self-assembly for biological materials is that they will degrade back into individual molecules that can be broken down by the body.

DNA nanotechnology

DNA nanotechnology is an area of current research that uses the bottom-up, self-assembly approach for nanotechnological goals. DNA nanotechnology uses the unique molecular recognition properties of DNA and other nucleic acids to create self-assembling branched DNA complexes with useful properties.[18] DNA is thus used as a structural material rather than as a carrier of biological information, to make structures such as complex 2D and 3D lattices (both tile-based as well as using the "DNA origami" method) and three-dimensional structures in the shapes of polyhedra.[19] These DNA structures have also been used as templates in the assembly of other molecules such as gold nanoparticles[20] and streptavidin proteins.[21]

Two-dimensional monolayers

The spontaneous assembly of a single layer of molecules at interfaces is usually referred to as two-dimensional self-assembly. One of the common examples of such assemblies are Langmuir-Blodgett monolayers and multilayers of surfactants. Non-surface active molecules can assemble into ordered structures as well. Early direct proofs showing that non-surface active molecules can assemble into higher-order architectures at solid interfaces came with the development of scanning tunneling microscopy and shortly thereafter.[22] Eventually two strategies became popular for the self-assembly of 2D architectures, namely self-assembly following ultra-high-vacuum deposition and annealing and self-assembly at the solid-liquid interface.[23] The design of molecules and conditions leading to the formation of highly-crystalline architectures is considered today a form of 2D crystal engineering at the nanoscopic scale.

See also

References

  1. ^ Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N.R.; Kantorovich, L.; Moriarty, P. (2014). "Mapping the force field of a hydrogen-bonded assembly". Nature Communications. 5: 3931. Bibcode:2014NatCo...5.3931S. doi:10.1038/ncomms4931. PMC 4050271. PMID 24875276.
  2. ^ Hapala, Prokop; Kichin, Georgy; Wagner, Christian; Tautz, F. Stefan; Temirov, Ruslan; Jelínek, Pavel (2014-08-19). "Mechanism of high-resolution STM/AFM imaging with functionalized tips". Physical Review B. 90 (8): 085421. arXiv:1406.3562. Bibcode:2014PhRvB..90h5421H. doi:10.1103/PhysRevB.90.085421. S2CID 53610973.
  3. ^ Hämäläinen, Sampsa K.; van der Heijden, Nadine; van der Lit, Joost; den Hartog, Stephan; Liljeroth, Peter; Swart, Ingmar (2014-10-31). "Intermolecular Contrast in Atomic Force Microscopy Images without Intermolecular Bonds". Physical Review Letters. 113 (18): 186102. arXiv:1410.1933. Bibcode:2014PhRvL.113r6102H. doi:10.1103/PhysRevLett.113.186102. PMID 25396382. S2CID 8309018.
  4. ^ Kling, Felix (2016). Diffusion and structure formation of molecules on calcite(104) (PhD). Johannes Gutenberg-Universität Mainz. doi:10.25358/openscience-2179.
  5. ^ Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong; Stöhr, Meike (2014). "Self-assembly of pyrene derivatives on Au(111): Substituent effects on intermolecular interactions". Chem. Commun. 50 (91): 14089–14092. doi:10.1039/C4CC02753A. PMID 24905327.
  6. ^ Lehn, J.-M. (1988). "Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization". Angew. Chem. Int. Ed. Engl. 27 (11): 89–121. doi:10.1002/anie.198800891.
  7. ^ Lehn, J.-M. (1990). "Supramolecular Chemistry-Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)". Angew. Chem. Int. Ed. Engl. 29 (11): 1304–1319. doi:10.1002/anie.199013041.
  8. ^ Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives. Wiley-VCH. ISBN 978-3-527-29311-7.
  9. ^ Rosen, Milton J. (2004). Surfactants and interfacial phenomena. Hoboken, NJ: Wiley-Interscience. ISBN 978-0-471-47818-8.
  10. ^ Ariga, Katsuhiko; Hill, Jonathan P; Lee, Michael V; Vinu, Ajayan; Charvet, Richard; Acharya, Somobrata (2008). "Challenges and breakthroughs in recent research on self-assembly". Science and Technology of Advanced Materials. 9 (1): 014109. Bibcode:2008STAdM...9a4109A. doi:10.1088/1468-6996/9/1/014109. PMC 5099804. PMID 27877935.
  11. ^ Mao, C; Sun, W; Seeman, N. C. (1997). "Assembly of Borromean rings from DNA". Nature. 386 (6621): 137–138. Bibcode:1997Natur.386..137M. doi:10.1038/386137b0. PMID 9062186. S2CID 4321733.
  12. ^ Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S. H.; Cave, G. W.; Atwood, J. L.; Stoddart, J. F. (2004). "Molecular Borromean Rings" (PDF). Science. 304 (5675): 1308–1312. Bibcode:2004Sci...304.1308C. doi:10.1126/science.1096914. PMID 15166376. S2CID 45191675.
  13. ^ Min, Younjin; et al. (2008). "The role of interparticle and external forces in nanoparticle assembly". Nature Materials. 7 (7): 527–38. Bibcode:2008NatMa...7..527M. doi:10.1038/nmat2206. PMID 18574482.
  14. ^ Santos, Daniel; Spenko, Matthew; Parness, Aaron; Kim, Sangbae; Cutkosky, Mark (2007). "Directional adhesion for climbing: theoretical and practical considerations". Journal of Adhesion Science and Technology. 21 (12–13): 1317–1341. doi:10.1163/156856107782328399. S2CID 53470787. Gecko "feet and toes are a hierarchical system of complex structures consisting of lamellae, setae, and spatulae. The distinguishing characteristics of the gecko adhesion system have been described [as] (1) anisotropic attachment, (2) high pulloff force to preload ratio, (3) low detachment force, (4) material independence, (5) self-cleaning, (6) anti-self sticking and (7) non-sticky default state. ... The gecko's adhesive structures are made from ß-keratin (modulus of elasticity [approx.] 2 GPa). Such a stiff material is not inherently sticky; however, because of the gecko adhesive's hierarchical nature and extremely small distal features (spatulae are [approx.] 200 nm in size), the gecko's foot is able to intimately conform to the surface and generate significant attraction using van der Waals forces.
  15. ^ Crick FH, Orgel LE. The theory of inter-allelic complementation. J Mol Biol. 1964 Jan;8:161-5. doi: 10.1016/s0022-2836(64)80156-x. PMID 14149958
  16. ^ Bernstein H, Edgar RS, Denhardt GH. Intragenic complementation among temperature sensitive mutants of bacteriophage T4D. Genetics. 1965;51(6):987-1002.
  17. ^ H. Jehle (1963), "Intermolecular forces and biological specificity", Proc Natl Acad Sci USA, 50 (3): 516–524, doi:10.1073/pnas.50.3.516, PMC 221211, PMID 16578546
  18. ^ Seeman, N. C. (2003). "DNA in a material world". Nature. 421 (6921): 427–431. Bibcode:2003Natur.421..427S. doi:10.1038/nature01406. PMID 12540916.
  19. ^ Chen, J. & Seeman, N. C. (1991). "Synthesis from DNA of a molecule with the connectivity of a cube". Nature. 350 (6319): 631–633. Bibcode:1991Natur.350..631C. doi:10.1038/350631a0. PMID 2017259. S2CID 4347988.
  20. ^ Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. (1996). "A DNA-based method for rationally assembling nanoparticles into macroscopic materials". Nature. 382 (6592): 607–609. Bibcode:1996Natur.382..607M. doi:10.1038/382607a0. PMID 8757129. S2CID 4284601.
  21. ^ Yan, H; Park, S. H.; Finkelstein, G; Reif, J. H.; Labean, T. H. (2003). "DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires". Science. 301 (5641): 1882–1884. Bibcode:2003Sci...301.1882Y. doi:10.1126/science.1089389. PMID 14512621. S2CID 137635908.
  22. ^ Foster, J. S. & Frommer, J. E. (1988). "Imaging of liquid crystals using a tunnelling microscope". Nature. 333 (6173): 542–545. Bibcode:1988Natur.333..542F. doi:10.1038/333542a0. S2CID 4368440.
  23. ^ Rabe, J.P. & Buchholz, S. (1991). "Commensurability and Mobility in Two-Dimensional Molecular Patterns on Graphite". Science. 253 (5018): 424–427. Bibcode:1991Sci...253..424R. doi:10.1126/science.253.5018.424. JSTOR 2878886. PMID 17746397. S2CID 42385720.

Read other articles:

Humata repens Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Polypodiophyta Kelas: Polypodiopsida Ordo: Polypodiales Famili: Davalliaceae Genus: Humata Spesies: Humata repensL. f. J. Small ex Diels, 1899 Humata repens (sinonim: Adiantum repens) adalah tumbuhan paku/pakis epifit (fern) dan termasuk ke dalam keluarga Davalliaceae. Tanaman ini epilitik pada variasi bebatuan, terkadang terestrial, di tempat yang sangat basah sampai kering di area permuk...

 

 

Sutjipto Menteri PertanianMasa jabatan28 Juli 1966 – 10 Juni 1968PresidenSoehartoPendahuluFrans SedaPenggantiThoyib Hadiwidjaja Informasi pribadiLahir4 Desember 1926 (umur 97)Boyolali, Jawa TengahKarier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1957 – 1976Pangkat Mayor Jenderal TNISatuanKorps Kehakiman (CKH)Sunting kotak info • L • B Mayor Jenderal TNI (Purn.) Sutjipto merupakan seorang perwira tinggi, politikus, dan ...

 

 

Mario Riva Nazionalità  Italia Calcio Ruolo centromediano Carriera Squadre di club1 1927-1928 Pro Victoria? (?)1928-1931 Monza38 (2)1931-1940 Monza191 (24) Carriera da allenatore 1951-1952 Pro Victoria 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Mario Riva (Monza, 12 febbraio 1909 – ...) è stato un calciatore italiano, ...

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

 

Disambiguazione – PC rimanda qui. Se stai cercando altri significati, vedi Pc (disambigua). Questa voce o sezione sull'argomento computer non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Rappresentazione grafica di un computer desktop. Un personal computer (dalla lingua inglese, in italiano letterale “calcolatore personale” oppure “elabora...

 

 

  لمعانٍ أخرى، طالع هنري كيندال (توضيح). هنري كيندال   معلومات شخصية الميلاد 9 ديسمبر 1926 [1][2][3][4][5]  بوسطن  الوفاة 15 فبراير 1999 (72 سنة) [1][2][3][4]  مقاطعة واكولا[6]  سبب الوفاة غرق  مواطنة الولايات المتحدة  عضو في الأكا�...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

 

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

 

 

西維珍尼亞 美國联邦州State of West Virginia 州旗州徽綽號:豪华之州地图中高亮部分为西維珍尼亞坐标:37°10'N-40°40'N, 77°40'W-82°40'W国家 美國加入聯邦1863年6月20日(第35个加入联邦)首府(最大城市)查爾斯頓政府 • 州长(英语:List of Governors of {{{Name}}}]]) • 副州长(英语:List of lieutenant governors of {{{Name}}}]])吉姆·賈斯蒂斯(R)米奇·卡邁克爾(...

1900 painting by Thomas Eakins The Thinker: Portrait of Louis N. KentonArtistThomas EakinsYear1900MediumOil on canvasDimensions210 cm × 110 cm (82 in × 42 in)LocationMetropolitan Museum of Art, New York The Thinker: Portrait of Louis N. Kenton is an oil painting of 1900 by the American artist Thomas Eakins. It is a depiction of the artist's brother-in-law, Louis N. Kenton (1865-1947), and it has been called one of Eakins's most memorable portraits.&...

 

 

39°51′38″N 4°1′27.3″W / 39.86056°N 4.024250°W / 39.86056; -4.024250 مسجد باب المردوم   إحداثيات 39°51′38″N 4°01′27″W / 39.86055556°N 4.02425°W / 39.86055556; -4.02425   معلومات عامة الدولة إسبانيا  أبعاد المبنى التفاصيل التقنية المواد المستخدمة طابوق  التصميم والإنشاء   معلومات أخر�...

 

 

Attorney general for the U.S. state of Kansas This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kansas Attorney General – news · newspapers · books · scholar · JSTOR (January 2014) (Learn how and when to remove this message) Attorney General of the State of KansasSeal of the attorney general of KansasIncumbentKris Kobachsince&#...

Buddhism by country Buddhism in SingaporeMain Shrine Hall of the Singapore Buddhist Lodge at River ValleyTotal population1,074,159[1]31.1% of the resident populationReligions Buddhism Part of a series onBuddhism Glossary Index Outline History Timeline The Buddha Pre-sectarian Buddhism Councils Silk Road transmission of Buddhism Decline in the Indian subcontinent Later Buddhists Buddhist modernism DharmaConcepts Four Noble Truths Noble Eightfold Path Dharma wheel Five Aggregates Imperm...

 

 

Michael E. DeBakeyMichael Ellis DeBakeyLahirMichel DeBakey(1908-09-07)7 September 1908Lake Charles, LouisianaMeninggal11 Juli 2008(2008-07-11) (umur 99)Houston, TexasAlmamaterUniversitas TulanePenghargaanMedali Emas Lomonosov (2003) Michael Ellis DeBakey (7 September 1908–11 Juli 2008) adalah seorang dokter bedah jantung, ilmuwan, dan pengajar kedokteran Lebanon-Amerika Serikat.[2] DeBakey merupakan kanselor emeritus Kolese Kedokteran Baylor di Houston, Texas, direktur The Met...

 

 

自由意志党Libertarian Party自由意志党标志主席乔·毕晓普·海克斯曼(DC)书记卡琳·安·哈洛斯(CO)成立1971年12月11日,​52年前​(1971-12-11)总部弗吉尼亚州亚历山德里亚杜克街1444号党员(2021年)▲ 693,634[1] 意識形態多数:自由意志主义[2]自由放任[3] 文化自由主义(英语:Cultural liberalism)[3]古典自由主义[3]经济自由主义[3]财政�...

كأس الدوري الألماني كأس الدوري الألماني سنة التأسيس 1997 المنطقة  ألمانيا عدد الفرق 6 النادي الأكثر نجاحاً بايرن ميونخ (6 ألقاب) تعديل مصدري - تعديل   درع البطولة كأس الدوري الألماني (بالألمانية: DFL-Ligapokal) هي بطولة كرة قدم تقام سنوياً في ألمانيا وكانت تقام قبل بداية الموسم �...

 

 

Würzburg Fortress Marienberg dengan Old Main Bridge di bagiand depan Lambang kebesaranLetak Würzburg NegaraJermanNegara bagianBayernWilayahLower FranconiaKreisDistrik perkotaanPemerintahan • MayorGeorg Rosenthal (SPD)Luas • Total87,63 km2 (3,383 sq mi)Ketinggian177 m (581 ft)Populasi (2013-12-31)[1] • Total124.698 • Kepadatan14/km2 (37/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos97018–97084Kode area...

 

 

Twin 125sNASCAR Cup SeriesTempatDaytona International SpeedwayLokasiDaytona Beach, Florida, United StatesPerusahaan sponsorBluegreen Vacations[1]Lomba pertama1959Jarak tempuh150 miles (241.401 km)Jumlah putaran60Both stages: 30 eachNama sebelumnya100 Mile Qualifying Races (1959–1967)125 Mile Qualifying Races (1969–1980)UNO Twin 125 Qualifiers (1981–1984)7-Eleven Twin 125's (1985–1987)Twin 125 Qualifiers (1988–1990)Gatorade Twin 125 Qualifiers (1991–1993)Gatorade Twin 125's...

Individual connection to the Internet Internet connection redirects here. For the song, see Internet Connection. This article needs to be updated. The reason given is: Many statistics are outdated; the article makes little mention of modern applications of Internet access (e.g. video streaming). Please help update this article to reflect recent events or newly available information. (June 2023) InternetAn Opte Project visualization of routing paths through a portion of the Internet General Ac...

 

 

English chef Simon RimmerRimmer in May 2010BornSimon Peter Rimmer (1963-05-05) 5 May 1963 (age 61)Wallasey, Wirral, EnglandOccupationChefYears active1990–present Simon Peter Rimmer (born 5 May 1963[1]) is an English celebrity chef, best known for his on-screen partnership with Tim Lovejoy. Early life Simon Peter Rimmer was born in Wallasey.[a] Career Rimmer originally studied fashion and textile design,[2] and later taught himself to cook.[3] In 199...