Misra & Gries edge coloring algorithm

The Misra & Gries edge coloring algorithm is a polynomial time algorithm in graph theory that finds an edge coloring of any simple graph. The coloring produced uses at most colors, where is the maximum degree of the graph. This is optimal for some graphs, and it uses at most one color more than optimal for all others. The existence of such a coloring is guaranteed by Vizing's theorem.

It was first published by Jayadev Misra and David Gries in 1992.[1] It is a simplification of a prior algorithm by Béla Bollobás.[2]

This algorithm is the fastest known almost-optimal algorithm for edge coloring, executing in time. A faster time bound of was claimed in a 1985 technical report by Gabow et al., but this has never been published.[3]

In general, optimal edge coloring is NP-complete, so it is very unlikely that a polynomial time algorithm exists. There are however exponential time exact edge coloring algorithms that give an optimal solution.

Key concepts

Free color

A color c is said to be free on a vertex u if no incident edge of u has color c.

Fan

A fan F = [x1,x2,x3] of v (dashed edges are uncolored), (v,x1), (v,x2), (v,x3) are the fan edges. F = [x1,x2] is also a fan of v, but it is not maximal.

A fan of a vertex X is a sequence of vertices F[1:k] that satisfies the following conditions:

  1. F[1:k] is a non-empty sequence of distinct neighbors of X;
  2. Edge (X,F[1]) is uncolored;
  3. The color of (X,F[i+1]) is free on F[i] for 1 ≤ i < k.

Given a fan F, any edge (X,F[i]) for 1 ≤ ik is a fan edge.

Rotating a fan

Rotating the fan F = [x1,x2,x3] on the left results in the fan on the right

Given a fan F[1:k] of a vertex X, the "rotate fan" operation does the following: for i = 1, ..., k-1, assign the color of (X,F[i + 1]) to edge (X,F[i]). Finally, uncolor (X, F[k]).

This operation leaves the coloring valid because, by the definition of a fan, the color of (X,F[i+1]) was free on F[i].

cd-path

Examples of cdx paths: ac,cg,gd is a red-greenc path and bd,dg is a red-oranged path.

Let c and d be colors. A cdX-path is an edge path that goes through vertex X, only contains edges colored c or d and is maximal. (We cannot add any other edge with color c or d to the path.) If neither c nor d is incident on X, there is no such path. If such a path exists, it is unique as at most one edge of each color can be incident on X.

Inverting a cd-path

Inverting the red-greena path from the graph on the left results in the graph on the right.

The operation "invert the cdX-path" switches every edge on the path colored c to d and every edge colored d to c. Inverting a path can be useful to free a color on X if X is one of the endpoints of the path: if color c but not d was incident on X, now color d but not c is incident on X, freeing c for X.

This operation leaves the coloring valid. For vertices on the path that are not endpoints, no new color is added. For endpoints, the operation switches the color of one of its edges between c and d. This is valid: suppose the endpoint was connected by a c edge, then d was free on this endpoint because otherwise, this vertex cannot be an endpoint. Since d was free, this edge can switch to d.

Algorithm

algorithm Misra & Gries edge coloring algorithm is
    input: A graph G.
    output: A proper coloring c of the edges of G.

    Let U := E(G)

    while U ≠ ∅ do
        Let (X,v) be any edge in U.  
        Let F[1:k] be a maximal fan of X with F[1]=v.
        Let c be a free color on X and d be a free color on F[k].  
        Invert the cdX-path.  
        Let w ∈ {1..k} such that F'=F[1:w] is a fan and d is free on F[w].  
        Rotate F'.
        Set the color of (X,w) to d.
        U := U − {(X,v)}
    end while

Proof of correctness

The correctness of the algorithm is proved in three parts. First, it is shown that the inversion of the cdX-path guarantees a w ∈ {1,..,k} such that F = F[1:w] is a fan and d is free on F[w]. Then, it is shown that the edge coloring is valid and requires at most Δ+1 colors.

Path inversion guarantee

Prior to the inversion, there are two cases:

Case 1: the fan has no edge colored d. Since F is a maximal fan on X and d is free on F[k], d is free on X. Otherwise, suppose an edge (X,u) has color d, then u can be added to F to make a bigger fan, contradicting with F being maximal. Thus, d is free on X, and since c is also free on X, there is no cdX-path and the inversion has no effect on the graph. Set w = k.

Case 2: the fan has one edge with color d. Let (X,F[i+1]) be this edge. Note that i+1 ≠ 1 since (X,F[1]) is uncolored. By definition of a fan, d is free on F[i]. Also, ik since the fan has length k but there exists a F[i+1]. We can now show that after the inversion,
      (1): for j ∈ {1, ..., k-1} \ {i}, the color of (X,F[j+1]) is free on F[j].

Note that prior to the inversion, c is free on X and (X,F[i+1]) has color d, so the other edges in the fan, i.e., all (X,F[j+1]) above, cannot have color c or d. Since the inversion only affects edges that are colored c or d, (1) holds.

Case2.1: F[i] is not on the cdX-path. The inversion will not affect the set of free colors on F[i], and d will remain free on it. By (1), F = F[1:i] is a valid fan, and we can set w = i.

Case2.2: F[i] is on the cdX-path. Below, we can show that F[1:k] is still a fan after the inversion and d remains free on F[k], so we can set w = k.

Since d was free on F[i] before the inversion and F[i] is on the cdX-path, F[i] is an endpoint of the path and c will be free on F[i] after the inversion. The inversion will change the color of (X,F[i+1]) from d to c. Thus, since c is now free on F[i] and (1) holds, th whole F remains a fan. Also, d remains free on F[k], since F[k] is not on the cdX-path. (Suppose that it is; since d is free on F[k], then it would have to be an endpoint of the path, but X and F[i] are the endpoints.)

The edge coloring is valid

This can be shown by induction on the number of colored edges. Base case: no edge is colored, this is valid. Induction step: suppose this was true at the end of the previous iteration. In the current iteration, after inverting the path, d will be free on X, and by the previous result, it will also be free on w. Rotating F does not compromise the validity of the coloring. Thus, after setting the color of (X,w) to d, the coloring is still valid.

The algorithm requires at most Δ+1 colors

In a given step, only colors c and d are used. F[k] has at most Δ colored edges, so Δ+1 colors in total ensures that we can pick d. This leaves Δ colors for c. Since there is at least one uncolored edge incident on X, and its degree is bounded by Δ, there are most Δ-1 colors incident on X currently, which leaves at least one choice for c.

Complexity

In every iteration of the loop, one additional edge gets colored. Hence, the loop will run times. Finding the maximal fan, the colors c and d and invert the cdX-path can be done in time. Finding w and rotating F takes time. Finding and removing an edge can be done using a stack in constant time (pop the last element) and this stack can be populated in time. Thus, each iteration of the loop takes time, and the total running time is .

References

  1. ^ Misra, Jayadev; Gries, David (1992). "A constructive proof of Vizing's theorem" (PDF). Information Processing Letters. 41 (3): 131–133. doi:10.1016/0020-0190(92)90041-S.
  2. ^ Bollobás, Béla (1982). Graph theory. Elsevier. p. 94.
  3. ^ Gabow, Harold N.; Nishizeki, Takao; Kariv, Oded; Leven, Daniel; Terada, Osamu (1985), Algorithms for edge-coloring graphs, Tech. Report TRECIS-8501, Tohoku University

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Mary Elizabeth Bayer, C.M., M.A., LL.D. adalah seorang aktivis masyarakat, pendidik dan pegawai negeri di Kanada. Mary menjadi sukarelawan yang memiliki kontribusi besar bagi bidang seni. Ia lahir tanggal 10 Februari 1927 di Alberta dari pasangan Anne...

 

Municipality in Basel-Landschaft, SwitzerlandRünenbergMunicipality Coat of armsLocation of Rünenberg RünenbergShow map of SwitzerlandRünenbergShow map of Canton of Basel-LandschaftCoordinates: 47°26′N 7°53′E / 47.433°N 7.883°E / 47.433; 7.883CountrySwitzerlandCantonBasel-LandschaftDistrictSissachArea[1] • Total4.98 km2 (1.92 sq mi)Elevation595 m (1,952 ft)Population (31 December 2018)[2] •...

 

Gereja Katedral TanjungkarangGereja Katedral Kristus Raja di TanjungkarangGereja Katedral Tanjungkarang[1]LokasiJl. Kota Raja No. 1, Bandar Lampung, LampungNegaraIndonesiaDenominasiGereja Katolik RomaSejarahDidirikan1928DedikasiKristus RajaArsitekturStatusKatedralStatus fungsionalAktif, gedung gereja utama dalam pembangunan ulangSelesai1928AdministrasiKeuskupanKeuskupan TanjungkarangKlerusUskupYang Mulia Mgr. Vinsensius Setiawan TriatmojoImam yang bertugasRD. Johanes Baptista Sujanto,...

KokleaSayatan melintang dari kokleaTemplat:Inner ear mapBagian dari telinga dalam, menunjukkan kokleaRincianPelafalan/ˈkɒkliə, ˈkoʊkliə/[1]Bagian dariTelinga bagian dalamSistemSistem pendengaranPengidentifikasiBahasa LatincochleaMeSHD003051NeuroLex IDbirnlex_1190TA98A15.3.03.025TA26964FMA60201Daftar istilah anatomi[sunting di Wikidata]Koklea adalah sebuah bagian pada telinga bagian dalam yang betanggungjawab pada pendengaran. Koklea berbentuk rongga spiral Bagaimana suara di...

 

2002 German filmFührer ExDirected byWinfried BonengelWritten by Winfried Bonengel Ingo Hasselbach Douglas Graham Produced byLaurens StraubClementina HegewischRainer MockertStarring Aaron Hildebrand Christian Blümel CinematographyFrank BarbianEdited byMonika SchindlerMusic byLoek DikkerMichael BeckmannProductioncompaniesMBP (Germany)Next FilmStudioCanalRelease dateAugust 31, 2002 (2002-08-31)Running time107 min.CountryGermanyLanguageGermanBudget€5 000 000 Führer Ex is a Ger...

 

Strada statale 219di Gubbio e Pian d'AssinoLocalizzazioneStato Italia Regioni Umbria Province Perugia DatiClassificazioneStrada statale InizioSS 3 presso Fossato di Vico Fineex SS 3 bis presso Umbertide Lunghezza44,720[1] km Provvedimento di istituzioneD.M. 16/11/1959 - G.U. 41 del 18/02/1960[2] GestoreTratte ANAS: intera estensione (dal 2001 la gestione del tratto dal km 5,600 (Branca) al km 44,920 (Umbertide) è passata alla Regione Umbria che ha poi ulteriorm...

Universidade Federal do Río de Janeiro Universidad Federal de Río de Janeiro Sigla UFRJLema A Universidade do Brasil (La Universidad de Brasil)Tipo Pública FederalFundación 17 de diciembre de 1792 (Academia Real de artillería, fortificación, y diseño), 7 de septiembre de 1920 (universidad)LocalizaciónDirección Río de Janeiro, Río de Janeiro, Brasil BrasilCampus 5Coordenadas 22°51′45″S 43°13′26″O / -22.8625, -43.223888888889AdministraciónRector Denise...

 

4th ArmyGerman: 4. Armee4th Army InsigniaActive1939–45Country Nazi GermanyBranch German army ( Wehrmacht)TypeField armySize165,000 (June 1944)[1]60,000 (March 1945)[2]EngagementsWorld War II Invasion of Poland Battle of France Battle of Białystok–Minsk Battle of Smolensk Battle of Moscow Operation Büffel East Prussian Offensive Military unit The 4th Army (German: 4. Armee) was a field army of the Wehrmacht during World War II. Invasions of Poland and France The 4th...

 

Grand Prix Jepang 1995 Lomba ke-16 dari 17 dalam Formula Satu musim 1995 Detail perlombaan[1]Tanggal 29 October 1995Nama resmi XXI Fuji Television Japanese Grand PrixLokasi Suzuka Circuit, Suzuka, Mie, JapanSirkuit Permanent racing facilityPanjang sirkuit 5.864 km (3.665 mi)Jarak tempuh 53 putaran, 310.792 km (194.245 mi)Cuaca Rain, later dried outPosisi polePembalap Michael Schumacher Benetton-RenaultWaktu 1:38.023Putaran tercepatPembalap Michael Schumacher Benetton-RenaultWaktu 1:42...

Government agency in Washington state Washington State Department of Labor and IndustriesAgency overviewFormed1921 (1921)JurisdictionState of WashingtonHeadquarters7273 Linderson Way SouthwestTumwater, WashingtonEmployees2,891 (2015–25)Annual budget$2.7 billion (2015–25)^Agency executiveJoel Sacks, DirectorWebsitelni.wa.gov The Washington State Department of Labor and Industries (L&I) is a department of the Washington state government that regulates and enforces labor standards. ...

 

Pour les articles homonymes, voir Spirale (homonymie). NGC 1300, un bel exemple de galaxie spirale barrée. Image du télescope spatial Hubble. La galaxie NGC 1672. Une galaxie spirale barrée est une galaxie spirale dont les bras spiraux n’émergent pas du centre de la galaxie, mais d’une bande d’étoiles traversant ce centre. Les bras spiraux semblent émerger des bouts de la barre de ces galaxies, tandis qu’elles paraissent émerger directement du noyau d’une galaxie spirale ord...

 

The topic of this article may not meet Wikipedia's notability guideline for stand-alone lists. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: List of honours of Brunei awarded to heads of state and royalty – news · newsp...

Эта страница требует существенной переработки. Возможно, её необходимо правильно оформить, дополнить или переписать.Пояснение причин и обсуждение — на странице Википедия:К улучшению/22 июля 2022. Гран-при Канады 1992 года Дата 14 июня 1992 года Место Монреаль, Канада Трасса Авт�...

 

The Airport/Facility Directory (abbreviated A/FD), now identified as Chart Supplement in the U.S., is a pilot's manual that provides comprehensive information on airports, large and small, and other aviation facilities and procedures. Description The directory is published in seven volumes that cover the continental United States, Puerto Rico, and the U.S. Virgin Islands. Each volume is updated every 56 days by the United States Department of Transportation (DOT) with information from the Fed...

 

Ol'ga BogoslovskajaNazionalità Unione Sovietica Russia (dal 1991) Altezza166 cm Peso54 kg Atletica leggera SpecialitàVelocità Record 60 m 706 (indoor – 1994) 100 m 1107 (1992) 200 m 2335 (1993) CarrieraNazionale 1992 Squadra Unificata1993 Russia Palmarès  Squadra Unificata Competizione Ori Argenti Bronzi Giochi olimpici 0 1 0  Russia Competizione Ori Argenti Bronzi Mondiali 1 0 0 Vedi maggiori dettagli  Modifica dati su Wikidata · Manuale Ol'ga Michajlovna...

利園三期利園三期概要状态已完工類型商業地點香港島銅鑼灣(利園山)新寧道1號坐标22°16′41″N 114°11′07″E / 22.27806°N 114.18528°E / 22.27806; 114.18528竣工日2018年开放2018年第二季所有者希慎興業技术细节层数21设计与建造建筑师王歐陽建築師集團结构工程师奧雅納主承包商金門建築其他信息餐厅数2 利園三期3樓寫字樓大堂 利園三期商場中庭 利園三期商場地�...

 

An editor has performed a search and found that sufficient sources exist to establish the subject's notability. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Exercise intensity – news · newspapers · books · scholar · JSTOR (November 2021) (Learn how and when to remove this message) Exercise intensity refers to how much energy is expended when exercising. Perceive...

 

NGC 2344 La galaxie spirale NGC 2344. Données d’observation(Époque J2000.0) Constellation Lynx Ascension droite (α) 07h 12m 28,6s[1] Déclinaison (δ) 47° 10′ 00″ [1] Magnitude apparente (V) 12,0[2] 12,8 dans la Bande B[2] Brillance de surface 12,64 mag/am2[2] Dimensions apparentes (V) 1,5′ × 1,2′[2] Décalage vers le rouge 0,003239 ± 0,000009[1] Angle de position 165°[2] Localisation dans la constellation : Lynx Astrométrie Vitesse rad...

女神異聞錄4ペルソナ4Shin Megami Tensei: Persona 4类型角色扮演、社会模拟平台PlayStation 2、PlayStation Vita、Microsoft Windows、PlayStation 4、Xbox One、Xbox Series X/S、任天堂Switch开发商Atlus发行商日本 / 北美洲:Atlus欧洲:史克威尔艾尼克斯 (PS2)[1]欧洲:日本一软件 (Vita)[2]澳洲:育碧[3]韩国:索尼電腦娛樂臺港:索尼電腦娛樂(Vita)全球:世嘉(Windows、XBO、XSX、PS4、...

 

Pour les articles homonymes, voir Amou (homonymie). Amou L'église Saint-Pierre d'Amou. Blason Administration Pays France Région Nouvelle-Aquitaine Département Landes Arrondissement Dax Intercommunalité Communauté de communes Coteaux et Vallées des Luys(siège) Maire Mandat Florence Bergez 2020-2026 Code postal 40330 Code commune 40002 Démographie Gentilé amollois Populationmunicipale 1 560 hab. (2021 ) Densité 57 hab./km2 Géographie Coordonnées 43° 35′ ...