Melnikov distance

In mathematics, the Melnikov method is a tool to identify the existence of chaos in a class of dynamical systems under periodic perturbation.

Background

The Melnikov method is used in many cases to predict the occurrence of chaotic orbits in non-autonomous smooth nonlinear systems under periodic perturbation. According to the method, it is possible to construct a function called the "Melnikov function" which can be used to predict either regular or chaotic behavior of a dynamical system. Thus, the Melnikov function will be used to determine a measure of distance between stable and unstable manifolds in the Poincaré map. Moreover, when this measure is equal to zero, by the method, those manifolds crossed each other transversally and from that crossing the system will become chaotic.

This method appeared in 1890 by H. Poincaré [1] and by V. Melnikov in 1963[2] and could be called the "Poincaré-Melnikov Method". Moreover, it was described by several textbooks as Guckenheimer & Holmes,[3] Kuznetsov,[4] S. Wiggins,[5] Awrejcewicz & Holicke[6] and others. There are many applications for Melnikov distance as it can be used to predict chaotic vibrations.[7] In this method, critical amplitude is found by setting the distance between homoclinic orbits and stable manifolds equal to zero. Just like in Guckenheimer & Holmes where they were the first who based on the KAM theorem, determined a set of parameters of relatively weak perturbed Hamiltonian systems of two-degrees-of-freedom, at which homoclinic bifurcation occurred.

The Melnikov distance

Consider the following class of systems given by

Figure 1: Phase space representing the assumptions and with respect to the system (1).

or in vector form

Figure 2: Homoclinic manifolds and indicated by The lines on represent a typical trajectory of the system 4.

where , , and


Assume that system (1) is smooth on the region of interest, is a small perturbation parameter and is a periodic vector function in with the period .

If , then there is an unperturbed system

From this system (3), looking at the phase space in Figure 1, consider the following assumptions

  • A1 - The system has a hyperbolic fixed point , connected to itself by a homoclinic orbit 
  • A2 - The system is filled inside by a continuous family  of periodic orbits of period with where

To obtain the Melnikov function, some tricks have to be used, for example, to get rid of the time dependence and to gain geometrical advantages new coordinate has to be used that is cyclic type given by Then, the system (1) could be rewritten in vector form as follows

Figure 3: Normal vector to .

Hence, looking at Figure 2, the three-dimensional phase space where and has the hyperbolic fixed point of the unperturbed system becoming a periodic orbit The two-dimensional stable and unstable manifolds of by and are denoted, respectively. By the assumption and coincide along a two-dimensional homoclinic manifold. This is denoted by where is the time of flight from a point to the point on the homoclinic connection.

In the Figure 3, for any point a vector is constructed , normal to the as follows Thus varying and serve to move to every point on

Splitting of stable and unstable manifolds

If is sufficiently small, which is the system (2), then becomes becomes and the stable and unstable manifolds become different from each other. Furthermore, for this sufficiently small in a neighborhood the periodic orbit of the unperturbed vector field (3) persists as a periodic orbit, Moreover, and are -close to and respectively.

Figure 4: Splitting of the manifolds giving and as projections in

Consider the following cross-section of the phase space then and are the trajectories of the

unperturbed and perturbed vector fields, respectively. The projections of these trajectories onto are given by and Looking at the Figure 4, splitting of and is defined hence, consider the points that intersect transversely as and , respectively. Therefore, it is natural to define the distance between and at the point denoted by and it can be rewritten as Since and lie on and and then can be rewritten by

Figure 5: Geometrical representation with respect to the crossing of the manifolds to the normal vector

The manifolds and may intersect in more than one point as shown in Figure 5. For it to be possible, after every intersection, for sufficiently small, the trajectory must pass through again.

Deduction of the Melnikov function

Expanding in Taylor series the eq. (5) about gives us where and

When then the Melnikov function is defined to be

since is not zero on , considering finite and

Using eq. (6) it will require knowing the solution to the perturbed problem. To avoid this, Melnikov defined a time dependent Melnikov function

Where and are the trajectories starting at and respectively. Taking the time-derivative of this function allows for some simplifications. The time-derivative of one of the terms in eq. (7) is From the equation of motion, then Plugging equations (2) and (9) back into (8) gives The first two terms on the right hand side can be verified to cancel by explicitly evaluating the matrix multiplications and dot products. has been reparameterized to .

Integrating the remaining term, the expression for the original terms does not depend on the solution of the perturbed problem.

The lower integration bound has been chosen to be the time where , so that and therefore the boundary terms are zero.

Combining these terms and setting the final form for the Melnikov distance is obtained by

Then, using this equation, the following theorem

Theorem 1: Suppose there is a point such that

  • i) and
  • ii) .

Then, for sufficiently small, and intersect transversely at Moreover, if for all , then

Simple zeros of the Melnikov function imply chaos

From theorem 1 when there is a simple zero of the Melnikov function implies in transversal intersections of the stable and manifolds that results in a homoclinic tangle. Such tangle is a very complicated structure with the stable and unstable manifolds intersecting an infinite number of times.

Consider a small element of phase volume, departing from the neighborhood of a point near the transversal intersection, along the unstable manifold of a fixed point. Clearly, when this volume element approaches the hyperbolic fixed point it will be distorted considerably, due to the repetitive infinite intersections and stretching (and folding) associated with the relevant invariant sets. Therefore, it is reasonably expect that the volume element will undergo an infinite sequence of stretch and fold transformations as the horseshoe map. Then, this intuitive expectation is rigorously confirmed by a theorem stated as follows

Theorem 2: Suppose that a diffeomorphism , where is an n-dimensional manifold, has a hyperbolic fixed point with a stable and  unstable manifold that intersect transversely at some point , where Then, contains a hyperbolic set , invariant under , on which is topologically conjugate to a shift on finitely many symbols.

Thus, according to the theorem 2, it implies that the dynamics with a transverse homoclinic point is topologically similar to the horseshoe map and it has the property of sensitivity to initial conditions and hence when the Melnikov distance (10) has a simple zero, it implies that the system is chaotic.

References

  1. ^ Poincaré, Henri (1890). "Sur le problème des trois corps et les équations de la dynamique". Acta Mathematica. 13: 1–270.
  2. ^ Melnikov, V. K. (1963). "On the stability of a center for time-periodic perturbations". Tr. Mosk. Mat. Obs. 12: 3–52.
  3. ^ Guckenheimer, John; Holmes, Philip (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer Science & Business Media. ISBN 978-1-4612-1140-2.
  4. ^ Aleksandrovich), Kuznet︠s︡ov, I︠U︡. A. (I︠U︡riĭ (2004). Elements of Applied Bifurcation Theory (Third ed.). New York, NY: Springer New York. ISBN 9781475739787. OCLC 851800234.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. ^ Stephen, Wiggins (2003). Introduction to applied nonlinear dynamical systems and chaos (Second ed.). New York: Springer. ISBN 978-0387217499. OCLC 55854817.
  6. ^ Awrejcewicz, Jan; Holicke, Mariusz M (September 2007). Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods. World Scientific Series on Nonlinear Science Series A. WORLD SCIENTIFIC. Bibcode:2007snhd.book.....A. doi:10.1142/6542. ISBN 9789812709097. {{cite book}}: |journal= ignored (help)
  7. ^ Alemansour, Hamed; Miandoab, Ehsan Maani; Pishkenari, Hossein Nejat (2017-03-01). "Effect of size on the chaotic behavior of nano resonators". Communications in Nonlinear Science and Numerical Simulation. 44: 495–505. Bibcode:2017CNSNS..44..495A. doi:10.1016/j.cnsns.2016.09.010. ISSN 1007-5704.

Read other articles:

Katedral SaintesKatedral Santo PetrusPrancis: Cathédrale Saint-Pierre de Saintescode: fr is deprecated Katedral SaintesLokasiSaintesNegara PrancisDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan La Rochelle dan Saintes Katedral Saintes (Cathédrale Saint-Pierre de Saintes) adalah sebuah gereja katedral Katolik yang berlokasi di Saintes, Perancis. Katedral adalah monumen nasional. Dulunya merupakan tempat kedudukan Uskup Saintes, s...

 

Peta ekoregion Hutan hujan dataran rendah Kalimantan, di pulau Kalimantan Hutan hujan dataran rendah Kalimantan adalah sebuah ekoregion, di dalam bioma hutan tropis dan subtropis basah berdaun lebar, di pulau Kalimantan (Indonesia, Malaysia dan Brunei), Asia Tenggara.[1] Ekoregion ini merupakan rumah alami bagi 10.000 spesies tanaman, 380 jenis burung dan beberapa spesies mamalia. Hutan hujan dataran rendah Kalimantan mulai berkurang karena pembalakan, perburuan dan pengalihan untuk p...

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Budaya Djibouti di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjem...

Pour les articles homonymes, voir Sueur (homonymie). Jean-Pierre Sueur Jean-Pierre Sueur en 2007. Fonctions Questeur du Sénat 6 octobre 2020 – 2 octobre 2023(2 ans, 11 mois et 26 jours) Président Gérard Larcher Prédécesseur Bernard Lalande Successeur Marie-Arlette Carlotti Sénateur français 1er octobre 2001 – 2 octobre 2023(22 ans et 1 jour) Élection 23 septembre 2001 Réélection 25 septembre 201124 septembre 2017 Circonscription Loiret Groupe politique ...

 

Medical conditionPneumoperitoneumFrontal chest X-ray. The air bubble below the right hemidiaphragm (on the left of the image) is a pneumoperitoneum.SpecialtyGastroenterology  Pneumoperitoneum is pneumatosis (abnormal presence of air or other gas) in the peritoneal cavity, a potential space within the abdominal cavity. The most common cause is a perforated abdominal organ, generally from a perforated peptic ulcer, although any part of the bowel may perforate from a benign ulcer, tumor or ...

 

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個�...

Denis Diderot BiografiKelahiran5 Oktober 1713 Langres Kematian31 Juli 1784 (70 tahun)Paris Tempat pemakamanSaint-Roch, Paris Galat: Kedua parameter tahun harus terisi! Data pribadiPendidikanLycée Louis-le-Grand Lycée Saint-Louis Universitas Paris - Master of Arts (–1732) KegiatanSpesialisasiSeni pertunjukan Pekerjaanfilsuf, sejarawan, penerjemah, ahli ilmu politik, penulis, leksikograf, art theorist, correspondent, penulis drama, novelis, kritik...

 

RomolaPoster rilis teatrikalSutradaraHenry KingProduserHenry KingDitulis olehGeorge EliotWill M. RitcheyJules FurthmanDon BartlettPemeranLillian GishDorothy GishWilliam PowellRonald ColmanBonaventura IbáñezPenata musikLouis F. GottschalkSinematograferRoy F. OverbaughWilliam SchurrPenyuntingW. Duncan MansfieldDistributorMetro-Goldwyn-MayerTanggal rilis 6 Desember 1924 (1924-12-06) Durasi120 menitNegaraAmerika SerikatBahasaBisuIntertitel Inggris Romola adalah sebuah film drama Amer...

 

Gua Lubang Batu NerakaLeang Lubang Batu NerakaLokasiKabupaten Maros, Sulawesi Selatan, IndonesiaGeologikarst / batu kapur / batu gampingSitus webvisit.maroskab.go.idcagarbudaya.kemdikbud.go.id Gua Lubang Batu Neraka atau Leang Lubang Batu Neraka (Inggris: Hell Stone Hole Cave ) adalah sebuah gua di Kawasan Karst Maros-Pangkep, Taman Nasional Bantimurung-Bulusaraung, wilayah administratif Kabupaten Maros, Sulawesi Selatan, Indonesia. Gua ini adalah jenis gua alam dan gua horizontal. Secara mor...

Patung kepala Thukidides di Royal Ontario Museum, Toronto Thukidides (460 SM – 395 SM) (Yunani: Θουκυδίδης, Thoukydídēs) adalah sejarawan dan penulis dari Alimos. Karyanya adalah Sejarah Perang Peloponnesos yang menguraikan perang pada abad ke- SM antara Sparta melawan Athena sampai tahun 411 SM. Thukidides disebut sebagai bapak sejarah ilmiah karena standarnya yang ketat dalam mengumpulkan bukti serta analisisnya dalam hal sebab akibat tanpa rujukan mengenai campur tangan p...

 

Creative Artists Agency LLCJenisPerseroan Terbatas (PT)Didirikan1975; 49 tahun lalu (1975) di Beverly Hills, California, U.S.KantorpusatStars Century City, Los Angeles, California, U.S.Tokohkunci Bryan Lourd, Ketua dewanKevin Huvane, Ketua dewanRichard Lovett, Ketua dewanJames Burtson, PresidenAnggota3,401 relasi (2016)299 staff (2016)Situs webcaa.com Creative Artists Agency LLC atau disingkat CAA adalah sebuah agensi bakat dan olahraga yang terletak di Los Angeles, California, Amerika. ...

 

Cette page concerne l'année 1430 du calendrier julien. Pour l'année 1430 av. J.-C., voir 1430 av. J.-C. Chronologies L'Europe en 1430.Données clés 1427 1428 1429  1430  1431 1432 1433Décennies :1400 1410 1420  1430  1440 1450 1460Siècles :XIIIe XIVe  XVe  XVIe XVIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Arts plastiques (Dessin, Gravure, Peinture et Sculpture), (), () et Musique (Classique)   Religion (...

2007 Fort Worth mayoral election ← 2005 May 12, 2007[1] 2009 → Turnout6.93%[1]   Candidate Mike Moncrief Louis McBee Party Nonpartisan Nonpartisan Popular vote 16,424 3,138 Percentage 80.17% 15.32% Mayor before election Mike Moncrief Democratic Elected Mayor Mike Moncrief Democratic Elections in Texas Federal government Presidential elections 1848 1852 1856 1860 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 193...

 

Jamban pesawat (Inggris:aircraft lavatory) adalah sebuah ruangan kecil di pesawat terbang dengan jamban dan wastafel. Maskapai dan produsen pesawat terus menyelidiki cara-cara untuk meningkatkan teknologi desain toilet untuk meningkatkan fungsi dan mengurangi biaya produksi, dengan tetap menjaga tingkat keamanan yang memadai, kebersihan dan kemudahan. Referensi Pranala luar Wikimedia Commons memiliki media mengenai Aircraft toilets. A typical aircraft Vacuum Toilet System Aircraft Toilets lb...

 

Disambiguazione – Se stai cercando altri significati, vedi Scrooge. Ebenezer ScroogeEbenezer Scrooge parla al fantasma di Marley UniversoCanto di Natale Lingua orig.Inglese AutoreCharles Dickens EditoreChapman and Hall 1ª app.1843 1ª app. inA Christmas Carol Caratteristiche immaginarieSessomaschio Luogo di nascitaRegno Unito ProfessioneBanchiere Scrooge e Bob Cratchit illustrati da John Leech nel 1843 Il frontespizio della prima edizione del Canto di Natale del 1843 Ebenezer...

Franchise competing in BPL Cricket team Durdanto Dhakaদুর্দান্ত ঢাকাNickname(s)Blue WarriorsLeagueBangladesh Premier League, Bangabandhu T20 CupPersonnelCaptainTaskin AhmedCoachKhaled MahmudOwnerNewtext Knit Fashions LimitedTeam informationCityDhaka, BangladeshColoursOrange, Blue(Main & Current), Orange & Purple, Green & Black, Blue & Black, Blue, Black & BlueFounded 2012: Dhaka Gladiators 2015: Dhaka Dynamites 2019: Dhaka Platoon 2020: Beximco Dh...

 

Tibetan writer and former religious leader (1931–2022) For the article about the Dalai Lama named Geshe Kelsang Gyatso, see 7th Dalai Lama. 6th Kadampa Temple, based on the design of Geshe Kelsang Gyatso and dedicated to World Peace. Inaugurated June 2022 Geshe Kelsang Gyatso (Tibetan: བཀལ་བཟང་རྒྱ་མཚོ།, Wylie: bskal bzang rgya mtsho; 19 July 1931 – 17 September 2022) was a Buddhist monk, meditation teacher, scholar, and author.[1] He was the founder...

 

Луганськ Герб Луганська Прапор Луганська Парк героїв Німецько-Радянської війни, Музей історії та культури міста Луганська, Луганський академічний обласний російський драматичний театр, вулиця Радянська, паровоз Луганськтепловоз. Основні дані Країна  Україна Облас�...

Cetakan Jepang dari fabel Aesop karya Kawanabe Kyosai yang berasal dari tahun 1870-80 Periuk dan Kuali atau Dua Pot adalah salah satu Fabel Aesop dari diberi nomor 378 dalam Perry Index.[1] Fabel tersebut diambil dari sumber-sumber singkat. Kisah tersebut juga dirujuk dalam Sirakh 13:2-3. Fabel Terdapat versi Yunani pendek dari fabel tersebut dan puisi Latin akhir yang lebih panjang karya Avianus. Cerita tersebut mengisahkan dua pot, yang satu berbahan tanah liat dan yang lainnya berb...

 

Comune in Veneto, ItalyCostabissaraComuneComune di Costabissara Coat of armsLocation of Costabissara CostabissaraLocation of Costabissara in ItalyShow map of ItalyCostabissaraCostabissara (Veneto)Show map of VenetoCoordinates: 45°35′N 11°29′E / 45.583°N 11.483°E / 45.583; 11.483CountryItalyRegionVenetoProvinceVicenza (VI)FrazioniMottaGovernment • MayorGiovanni Maria ForteArea[1] • Total13.21 km2 (5.10 sq mi)Elevati...