Matt McConnell

Matt McConnell is an American sports broadcaster and is currently the play-by-play announcer for Utah Hockey Club.

Announcing career

NHL

McConnell got his start in the NHL as the radio play-by-play announcer for the Mighty Ducks of Anaheim, a position which he held from 1993-1996.

At the end of 1996 he went to the Pittsburgh Penguins as their radio play-by-play announcer.

In 1999, he joined the Atlanta Thrashers as the team's first-ever TV play-by-play announcer, a position which he held from 1999–2003, and returned to from 2009-2011.

From 2004–2006 he served as the Minnesota Wild TV play-by-play announcer. McConnell has also covered the NHL playoffs for NHL Radio and Westwood One.

in 2011 he was named the play-by-play announcer for the Arizona Coyotes. In 2013, he was named "Arizona Sports Broadcaster of the Year" by the National Sports Media Association. In 2020 and 2021, he was named a finalist for the same award. At the conclusion of the 2024 NHL season the Arizona Coyotes ceased operations.

In September 2024 McConnell was named the play-by-play announcer for the temporarily named Utah Hockey Club,[1] the newest team in the NHL, consisting of the assets of the former Arizona Coyotes.

College sports

McConnell also has served as the lead play-by-play announcer for CBS College Sports Network college hockey broadcasts. He also covered college basketball, college football and college lacrosse.[2]

World Juniors

McConnell served as the play-by-play announcer for NHL Network coverage of the 2009 World Junior Ice Hockey Championships.[3]

References

  1. ^ Miller, Ryan; Sept. 4, KSL com | Posted-; A.m, 2024 at 10:51. "Here's who will be calling Utah Hockey Club games". www.ksl.com. Retrieved 2024-09-04.{{cite web}}: CS1 maint: numeric names: authors list (link)
  2. ^ "CBS Sports - News, Live Scores, Schedules, Fantasy Games, Video and more". Archived from the original on September 18, 2012.
  3. ^ "USA Hockey". Archived from the original on 2011-01-11. Retrieved 2011-09-09.

Read other articles:

LolaNama resmiMasterCard Lola Formula One Racing TeamKantor pusatHuntingdon, Britania RayaPendiriEric BroadleyStaf terkenalChris MurphyDuncan McRobbieJoanna MossPembalap terkenalVincenzo SospiriRicardo RossetSejarah dalam ajang Formula SatuMesinFordGelar Konstruktor0Gelar Pembalap0Jumlah lomba1 (0 start)Menang0Posisi pole0Putaran tercepat0Lomba pertamaGrand Prix Australia 1997Lomba terakhirGrand Prix Australia 1997 MasterCard Lola Formula One Racing Team, biasa disebut sebagai MasterCard Lol...

 

 

Departemen Kerja Front Bersatu Komite Pusat Partai Komunis Tiongkok中共中央统一战线工作部Tanggal pendirian1942TipeLangsung melapor ke Komite Pusat Partai Komunis TiongkokKantor pusatJalan Fuyou 135, Distrik Xicheng, BeijingLokasiBeijingKetuaYou QuanWakil ketua eksekutifZhang YijiongWakil ketuaBagatur, Xu Lejiang*, Shi Dagang, Ran Wanxiang, Dai JunliangSekretaris DisiplinSu BoOrganisasi indukKomite Pusat Partai Komunis TiongkokSitus webwww.zytzb.gov.cn*Tingkat kementerian Departemen...

 

 

This article is part of a series onJoseph Smith 1805 to 1827 1827 to 1830 1831 to 1837 1838 to 1839 1839 to 1844 Death Legal Polygamy Wives Children Teachings Miracles Prophecies Bibliography Chronology Outline Category  Latter Day Saints portalvte Joseph Smith, the founder of the Latter Day Saint movement, was charged with approximately thirty criminal actions during his life, and at least that many financial civil suits.[1] Another source reports that Smith was arrested at...

Ne doit pas être confondu avec Ohmique. OmiqueLes principaux sujets d'étude omiques menant à la connaissance d'un phénotype.Partie de Spécialité (d)modifier - modifier le code - modifier Wikidata Les branches de la science connues sous le nom d'omiques (ou -omiques) sont constituées de diverses disciplines de la biologie dont les noms se terminent par le suffixe « -omique », comme la génomique, la protéomique, la métabolomique, la métagénomique et la transcriptomique[...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أكتوبر 2023) بانورموس   تقسيم إداري البلد اليونان  [1] إحداثيات 35°25′02″N 24°41′29″E...

 

 

Annual mathematical celebration on March 14 Not to be confused with National Pie Day. Pi DayLarry Shaw, the organizer of the first Pi Day celebration at the Exploratorium in San FranciscoObserved byUnited StatesTypeMathematicalSignificance3, 1, and 4 are the three most significant figures of π in its decimal representation.CelebrationsPie eating, pi memorization competitions, discussions about π[1]DateMarch 14Next timeMarch 14, 2025 (2025-03-14)FrequencyAnnualFirst...

Map showing the Soyuz Complex at the upper left, with the main spaceport to the lower right. The Ensemble de Lancement Soyouz (ELS) (dalam bahasa Inggris; Soyuz Launch Complex), adalah kompleks peluncuran di Guyana Space Centre di Kourou/Sinnamary, Guyana Prancis. Kompleks ini digunakan oleh roket Soyuz-ST: versi modifikasi dari Soyuz-2 yang dioptimalkan untuk peluncuran dari Kourou. Peluncuran pertama yang menggunakan kompleks terjadi pada tanggal 21 Oktober 2011, ketika sebuah Soyuz ST-B me...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Protes anti-Amerika di Nanjing setelah pengeboman terhadap kedutaan besar Tiongkok di Beograd oleh NATO, 1999 Sentimen anti-Amerika Serikat di Tiongkok adalah kebencian terhadap pemerintah atau bangsa Amerika Serikat yang timbul di Tiongkok. Di Tiongk...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) هذه ال...

一中同表,是台灣处理海峡两岸关系问题的一种主張,認為中华人民共和国與中華民國皆是“整個中國”的一部份,二者因為兩岸現狀,在各自领域有完整的管辖权,互不隶属,同时主張,二者合作便可以搁置对“整个中國”的主权的争议,共同承認雙方皆是中國的一部份,在此基礎上走向終極統一。最早是在2004年由台灣大學政治学教授張亞中所提出,希望兩岸由一中各表�...

 

 

43°44′4.74″N 7°25′16.8″E / 43.7346500°N 7.421333°E / 43.7346500; 7.421333 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2012 Monaco Grand Prix – news · newspapers · books · scholar · JSTOR (May 2013) (Learn how and when to remove this message) 2012 Monaco Grand Prix Race...

 

 

الكنيسة السريانية الكاثوليكية الأصل الكنيسة الرومانية الكاثوليكية،  ومسيحية شرقية  تعديل مصدري - تعديل   الكنيسة السريانية الكاثوليكية، (بالسريانية: ܣܘܪܝܝܐ عيتو سُريَيتو قَثوليقَيتو)، هي كنيسة كاثوليكية شرقية مستقلة مرتبطة بشركة كاملة مع الكنيسة الكاثوليكية ف�...

Barony in Longford, IrelandShrule Sruthail (Irish)BaronyBaronies of County Longford. Shrule is shaded forest green.Sovereign stateIrelandCountyLongfordArea • Total85 km2 (32.82 sq mi) Shrule (Irish: Sruthail), sometimes called Abbeyshrule, is a barony in County Longford, Ireland. Etymology Shrule takes its name from Abbeyshrule (Irish Mainistir Shruthla, abbey by the stream).[1] Location Shrule is located in southeast County Longford, on the lower reaches o...

 

 

مطار جانغيوان واشهان Cangyuan Washan Airport 沧源佤山机场   إياتا: CWJ  – ايكاو: ZPCW  موجز نوع المطار عام يخدم Cangyuan، يونان (الصين) البلد الصين  الموقع Cangyuan في يونان (الصين) إحداثيات 23°16′26″N 99°22′25″E / 23.27388889°N 99.37361111°E / 23.27388889; 99.37361111   الخريطة إحصائيات تعديل مصدري - تع...

 

 

GreeceAssociationHellenic Volleyball FederationConfederationCEVHead coachDante BoninfanteFIVB ranking35 (as of 10 July 2024)Uniforms Home Away Summer OlympicsAppearances1 (First in 2004)Best result5th (2004)World ChampionshipAppearances5 (First in 1986)Best result6th (1994)European ChampionshipAppearances14 (First in 1967)Best result (1987)Website Greece men's national volleyball team Medal record European Championship 1987 Belgium Team European League 2014 Montenegro Team 2006 Turkey Te...

Dutch politician (1942–2023) Tommel in 1983 Dirk Krijn Johannes Dick Tommel (18 April 1942 – 13 December 2023) was a Dutch politician of Democrats 66 (D66). Tommel was an MP from 1981 to 1994 and State Secretary from 1994 to 1998. He died on 13 December 2023, at the age of 81.[1] References ^ Voormalig KNB-voorzitter Dick Tommel overleden (in Dutch) Sources (in Dutch) Parlement.com biography vteFirst Kok cabinet (1994–1998) Preceded by: Third Lubbers cabinet Succeeded by: Second...

 

 

Immepip Names IUPAC name 4-(1H-imidazol-5-ylmethyl)piperidine Identifiers CAS Number 151070-83-6 Y 3D model (JSmol) Interactive image ChEMBL ChEMBL18661 N ChemSpider 2299982 N IUPHAR/BPS 1251 PubChem CID 3035842 UNII PZS44KB9KC Y CompTox Dashboard (EPA) DTXSID10164703 InChI InChI=1S/C9H15N3/c1-3-10-4-2-8(1)5-9-6-11-7-12-9/h6-8,10H,1-5H2,(H,11,12) NKey: MCNGUYXRBCIGOV-UHFFFAOYSA-N NInChI=1/C9H15N3/c1-3-10-4-2-8(1)5-9-6-11-7-12-9/h6-8,10H,1-5H2,(H,11,12)Key:&...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Lozza (disambigua). Lozzacomune Lozza – Veduta LocalizzazioneStato Italia Regione Lombardia Provincia Varese AmministrazioneSindacoMatteo Acchini (lista civica Comunità e Comune) dal 10/6/2024[1] TerritorioCoordinate45°46′29.33″N 8°51′41.21″E45°46′29.33″N, 8°51′41.21″E (Lozza) Altitudine350 m s.l.m. Superficie1,71 km² Abitanti1 232[2] (31-12-2020...

Lega Lettone-Estone 2022-2023 Competizione Latvian-Estonian Basketball League Sport Pallacanestro Edizione 5ª Organizzatore FIBA Date 30 settembre 2022 - 8 aprile 2023 Partecipanti 16 Sito web https://www.estlatbl.com/en/ Risultati Vincitore  Prometej(1º titolo) Secondo  VEF Rīga Terzo  Tartu Ülikooli Quarto  Kalev/Cramo Statistiche Miglior giocatore Gian Clavell Miglior marcatore Matej Radunić (556) Cronologia della competizione 2021-2022 2023-2024 Manuale...

 

 

Formal language that can be expressed using a regular expression For natural language that is regulated, see List of language regulators. Kleene's theorem redirects here. For his theorems for recursive functions, see Kleene's recursion theorem. In theoretical computer science and formal language theory, a regular language (also called a rational language)[1][2] is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science...