Mathematical chess problem

A mathematical chess problem is a mathematical problem which is formulated using a chessboard and chess pieces. These problems belong to recreational mathematics. The most well-known problems of this kind are the eight queens puzzle and the knight's tour problem, which have connection to graph theory and combinatorics. Many famous mathematicians studied mathematical chess problems, such as, Thabit, Euler, Legendre and Gauss.[1] Besides finding a solution to a particular problem, mathematicians are usually interested in counting the total number of possible solutions, finding solutions with certain properties, as well as generalization of the problems to N×N or M×N boards.

Independence problem

An independence problem (or unguard[2]) is a problem in which, given a certain type of chess piece (queen, rook, bishop, knight or king), one must find the maximum number that can be placed on a chessboard so that none of the pieces attack each other. It is also required that an actual arrangement for this maximum number of pieces be found. The most famous problem of this type is the eight queens puzzle. Problems are further extended by asking how many possible solutions exist. Further generalizations apply the problem to NxN boards.[3][4]

An 8×8 chessboard can have 16 independent kings, 8 independent queens, 8 independent rooks, 14 independent bishops, or 32 independent knights.[5] Solutions for kings, bishops, queens and knights are shown below. To get 8 independent rooks is sufficient to place them on one of main diagonals.

abcdefgh
8
a7 white king
c7 white king
e7 white king
g7 white king
a5 white king
c5 white king
e5 white king
g5 white king
a3 white king
c3 white king
e3 white king
g3 white king
a1 white king
c1 white king
e1 white king
g1 white king
8
77
66
55
44
33
22
11
abcdefgh
16 independent kings
abcdefgh
8
f8 white queen
d7 white queen
g6 white queen
a5 white queen
h4 white queen
b3 white queen
e2 white queen
c1 white queen
8
77
66
55
44
33
22
11
abcdefgh
8 independent queens
abcdefgh
8
h8 white rook
g7 white rook
f6 white rook
e5 white rook
d4 white rook
c3 white rook
b2 white rook
a1 white rook
8
77
66
55
44
33
22
11
abcdefgh
8 independent rooks
abcdefgh
8
b8 white bishop
c8 white bishop
d8 white bishop
e8 white bishop
f8 white bishop
g8 white bishop
a1 white bishop
b1 white bishop
c1 white bishop
d1 white bishop
e1 white bishop
f1 white bishop
g1 white bishop
h1 white bishop
8
77
66
55
44
33
22
11
abcdefgh
14 independent bishops
abcdefgh
8
b8 white knight
d8 white knight
f8 white knight
h8 white knight
a7 white knight
c7 white knight
e7 white knight
g7 white knight
b6 white knight
d6 white knight
f6 white knight
h6 white knight
a5 white knight
c5 white knight
e5 white knight
g5 white knight
b4 white knight
d4 white knight
f4 white knight
h4 white knight
a3 white knight
c3 white knight
e3 white knight
g3 white knight
b2 white knight
d2 white knight
f2 white knight
h2 white knight
a1 white knight
c1 white knight
e1 white knight
g1 white knight
8
77
66
55
44
33
22
11
abcdefgh
32 independent knights

Domination problems

A domination (or covering) problem involves finding the minimum number of pieces of the given kind to place on a chessboard such that all vacant squares are attacked at least once. It is a special case of the vertex cover problem. The minimum number of dominating kings is 9, queens is 5, rooks is 8, bishops is 8, and knights is 12. To get 8 dominating rooks, it is sufficient to place one on each file. Solutions for other pieces are provided on diagrams below.

abcdefgh
8
b8 white king
e8 white king
h8 white king
b5 white king
e5 white king
h5 white king
b2 white king
e2 white king
h2 white king
8
77
66
55
44
33
22
11
abcdefgh
9 dominating kings
abcdefgh
8
f7 white queen
c6 white queen
e5 white queen
g4 white queen
d3 white queen
8
77
66
55
44
33
22
11
abcdefgh
5 dominating queens
abcdefgh
8
d8 white bishop
d7 white bishop
d6 white bishop
d5 white bishop
d4 white bishop
d3 white bishop
d2 white bishop
d1 white bishop
8
77
66
55
44
33
22
11
abcdefgh
8 dominating bishops
abcdefgh
8
f7 white knight
b6 white knight
c6 white knight
e6 white knight
f6 white knight
c5 white knight
f4 white knight
c3 white knight
d3 white knight
f3 white knight
g3 white knight
c2 white knight
8
77
66
55
44
33
22
11
abcdefgh
12 dominating knights

The domination problems are also sometimes formulated as requiring one to find the minimal number of pieces needed to attack all squares on the board, including occupied ones.[6] For rooks, eight are required; the solution is to place them all on one file or rank. The solutions for other pieces are given below.

abcdefgh
8
b7 white king
e7 white king
h7 white king
b6 white king
e6 white king
h6 white king
b3 white king
e3 white king
h3 white king
b2 white king
e2 white king
h2 white king
8
77
66
55
44
33
22
11
abcdefgh
12 kings attack all squares
abcdefgh
8
g8 white queen
e6 white queen
d5 white queen
c4 white queen
a2 white queen
8
77
66
55
44
33
22
11
abcdefgh
5 queens attack all squares
abcdefgh
8
b6 white bishop
d6 white bishop
e6 white bishop
g6 white bishop
c4 white bishop
d4 white bishop
e4 white bishop
f4 white bishop
c2 white bishop
f2 white bishop
8
77
66
55
44
33
22
11
abcdefgh
10 bishops attacking all squares
abcdefgh
8
c7 white knight
e7 white knight
f7 white knight
c6 white knight
e6 white knight
c5 white knight
g5 white knight
c4 white knight
e4 white knight
b3 white knight
c3 white knight
e3 white knight
f3 white knight
g3 white knight
8
77
66
55
44
33
22
11
abcdefgh
14 knights attacking all squares

Domination by queens on the main diagonal of a chessboard of any size can be shown equivalent to a problem in number theory of finding a Salem–Spencer set, a set of numbers in which none of the numbers is the average of two others. The optimal placement of queens is obtained by leaving vacant a set of squares that all have the same parity (all are in even positions or all in odd positions along the diagonal) and that form a Salem–Spencer set.[7]

Piece tour problems

These kinds of problems ask to find a tour of certain chess piece, which visits all squares on a chess board. The most known problem of this kind is Knight's Tour. Besides the knight, such tours exists for king, queen and rook. Bishops are unable to reach each square on the board, so the problem for them is formulated to reach all squares of one color.[8]

Chess swap problems

In chess swap problems, the whites pieces swap with the black pieces.[9] This is done with the pieces' normal legal moves during a game, but alternating turns is not required. For example, a white knight can move twice in a row. Capturing pieces is not allowed. Two such problems are shown below. In the first one the goal is to exchange the positions of white and black knights. In the second one the positions of bishops must be exchanged with an additional limitation, that enemy pieces do not attack each other.

a4 black knightb4 black knightc4 black knightd4 black knight
a3 black knightb3 black knightc3d3 black knight
a2 white knightb2c2 white knightd2 white knight
a1 white knightb1 white knightc1 white knightd1 white knight
Knight swap puzzle
a5 black bishopb5 black bishopc5 black bishopd5 black bishop
a4b4c4d4
a3b3c3d3
a2b2c2d2
a1 white bishopb1 white bishopc1 white bishopd1 white bishop
Bishop swap puzzle

See also

Notes

  1. ^ Gik, p.11
  2. ^ MacKinnon, David. "Chessdom". GitHub. Retrieved October 20, 2024.
  3. ^ "Independent Pieces tour!". Lichess. Retrieved 9 July 2022.
  4. ^ "mathrecreation: Mathematical Chessboard Puzzles". mathrecreation. Retrieved 9 July 2022.
  5. ^ Gik, p.98
  6. ^ Gik, p.101.
  7. ^ Cockayne, E. J.; Hedetniemi, S. T. (1986), "On the diagonal queens domination problem", Journal of Combinatorial Theory, Series A, 42 (1): 137–139, doi:10.1016/0097-3165(86)90012-9, MR 0843468
  8. ^ Gik, p. 87
  9. ^ "Knight swap puzzle - Chess Forums".

References

Read other articles:

Gerakan kemerdekaan Taiwan Hanzi tradisional: 臺灣獨立運動 atau 台灣獨立運動 Hanzi sederhana: 台湾独立运动 Alih aksara Mandarin - Hanyu Pinyin: Táiwān dúlì yùndòng - Tongyong Pinyin: Táiwan dúlì yùndòng - Wade-Giles: T'ai²-wan¹ tu²-li⁴ yün⁴-tung⁴ - Gwoyeu Romatzyh: Tair'uan durlih yunndonq - Bopomofo: ㄊㄞˊ ㄨㄢ ㄉㄨˊ ㄌㄧˋ ㄩㄣˋ ㄉㄨㄥˋ Kejia (Hakka) - Romanisasi: Thòi-vân thu̍k-li̍p yun-thung Min Nan - Romanisasi POJ: Tâi-oân t...

 

U.S. law establishing a student loan program Higher Education Act of 1965Other short titlesHigher Education Facilities Act AmendmentNational Defense Education Act AmendmentLong titleAn Act to strengthen the educational resources of our colleges and universities and to provide financial assistance for students in post-secondary and higher education.Acronyms (colloquial)HEA, NTCANicknamesNational Teachers Corps ActEnacted bythe 89th United States CongressEffectiveNovemberCodificationTitles...

 

Гитлер принимает поздравления с 50-летием от Генриха Гиммлера, 1939 День рождения фюрера (нем. Führergeburtstag) — праздник в нацистской Германии, отмечавшийся в день рождения Адольфа Гитлера, 20 апреля. Официальным праздничным днём день рождения фюрера стал только однажды, по...

Gojōme 五城目町KotaprajaBalai Kota Gojōme BenderaEmblemLokasi Gojōme di Prefektur AkitaGojōmeLokasi di JepangKoordinat: 39°56′38″N 140°6′41.9″E / 39.94389°N 140.111639°E / 39.94389; 140.111639Koordinat: 39°56′38″N 140°6′41.9″E / 39.94389°N 140.111639°E / 39.94389; 140.111639Negara JepangWilayahTōhokuPrefektur AkitaDistrikMinamiakitaPemerintahan • WalikotaHikobē WatanabeLuas • To...

 

Gambar ukiran kayu basilisk oleh Ulisse Aldrovandi, Monstrorum historia, 1642 Basilisk (dari bahasa Yunani: βασιλίσκος basiliskos, raja kecil, bahasa Latin: Regulus) adalah reptil dalam legenda Eropa yang dikenal sebagai raja ular dalam mitologi (serpent) dan memiliki kemampuan untuk menimbulkan kematian bila menatapnya. Bila dideskripsikan, basilisk adalah kadal besar, ular raksasa atau ayam jantan setinggi tiga kaki dengan ekor dan gigi ular. Deskripsi ini mirip dengan cockatrice....

 

Cet article est une ébauche concernant un coureur cycliste britannique. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Ian BibbyIan Bibby lors du Tour Series 2016.InformationsNaissance 20 décembre 1986 (37 ans)PrestonNationalité britanniqueÉquipes professionnelles 2009Halfords2010Motorpoint-Marshalls Pasta2011Motorpoint2012Endura Racing2013-2014Madison Genesis2015-2016NFTO2017-2018JLT Condor2019Madiso...

密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Ernesto CalindriLahir(1909-02-05)5 Februari 1909Certaldo, ItaliaMeninggal9 Juni 1999(1999-06-09) (umur 90)Milan, ItaliaPekerjaanPemeranTahun aktif1938–1989 Ernesto Calindri (5 Februari 1909 – 9 Juni 1999) adalah seorang pem...

 

American truck manufacturer Western Star Trucks Sales, Inc.Office logoCompany typeSubsidiaryIndustryAutomotiveFounded1967 (1967), Kelowna, CanadaFounderWhite Motor CompanyHeadquartersPortland, Oregon, United StatesKey peopleRoger Nielson (President, CEO)Dave Carson (President)ProductsTrucksParentDaimler Truck North AmericaSubsidiariesERF (1996–2000)Websitewesternstarstrucks.com Western Star Trucks Sales, Inc. is an American truck manufacturer headquartered in Portland, Oregon, and a su...

English musician This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Declan Galb...

 

Human settlement in EnglandSnettertonAll Saints' parish churchSnettertonLocation within NorfolkArea28.03 km2 (10.82 sq mi)Population201 (2011 Census)• Density7/km2 (18/sq mi)OS grid referenceTL994910Civil parishSnettertonDistrictBrecklandShire countyNorfolkRegionEastCountryEnglandSovereign stateUnited KingdomPost townNorwichPostcode districtNR16PoliceNorfolkFireNorfolkAmbulanceEast of England UK ParliamentSouth West NorfolkWebsite...

 

سيوة ⵉⵙⵉⵡⵉⵏ بيوت سيوة القديمة سيوةعلم سيوةشعار الموقع الجغرافي تقسيم إداري البلد  مصر[1] محافظة مطروح المسؤولون محافظ مطروح مجدي الغرابلي.[2] رئيس مدينة سيوة شعبان أحمد معرف.[3] خصائص جغرافية إحداثيات 29°07′N 25°20′E / 29.11°N 25.33°E / 29.11; 25.33 المساحة 80 �...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2018) أبولو كورزينيويسكي   معلومات شخصية الميلاد 21 فبراير 1820 [1]  الوفاة 23 مايو 1869 (49 سنة) [1]  كراكوف  مكان الدفن مقبرة راكوفيسكي  مواطنة بولندا ال...

 

Spanish theologian For the mining specialist, see Bartolomé de Medina (mining specialist). This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (April 2014) (Learn how and when to remove this message) Fray Bartolomé de Medina Bartolomé de Medina, O.P. (1527-1580) was a Spanish theologian born in Medina de Rioseco, Spain. A memb...

 

В этом китайском имени фамилия (Ван) стоит перед личным именем. Ван Фучжи Дата рождения 7 октября 1619(1619-10-07)[1][2][…] Место рождения Хэнъян, империя Мин Дата смерти 18 февраля 1692(1692-02-18)[1][2][…] (72 года) Страна империя Цин[3]империя Мин Род деятельности философ,&...

ZeteFineo con i Boreadi, di Sebastiano Ricci Nome orig.Ζήτης Caratteristiche immaginarieSessoMaschio Zete (in greco antico: Ζήτης?, Zḕtēs) è un personaggio della mitologia greca, figlio di Borea e di Orizia. Indice 1 Mitologia 2 Note 3 Bibliografia 4 Collegamenti esterni Mitologia Zete fu uno degli Argonauti e partecipò con Giasone alla ricerca del vello d'oro. Insieme al fratello Calaide, Zete scacciò le Arpie dalla tavola di Fineo, figlio di Agenore, e le inseguì fino ...

 

Pour le film français de 1952, voir Casque d'Or (film). Casque d'or Nom original Guldhjälmen Pays Suède Date de création 1986 Dernier récipiendaire Jacob Josefson modifier  Le Casque d'or — Guldhjälmen en suédois — est un trophée de hockey sur glace de Suède. Il est remis annuellement, depuis la saison 1985-1986 au meilleur joueur de la division élite suédoise, l'Elitserien[1]. Le récipiendaire est désigné chaque année par le vote des joueurs de la ligue entière. Le ...

 

Gloves worn by a Roman Catholic bishop when celebrating Solemn Pontifical Mass This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Episcopal gloves – news · newspapers · books · scholar · JSTOR (August 2024) Pontifical gloves in the liturgical color violet The episcopal gloves or pontifical gloves (chi...

Historical state Akita Domain(1871)秋田藩Kubota Domain(1602–1871)久保田藩Domain of Japan1602–1871CapitalKubota CastleArea • Coordinates39°43′24.53″N 140°7′23.67″E / 39.7234806°N 140.1232417°E / 39.7234806; 140.1232417  • TypeDaimyō Historical eraEdo period• Established 1602• Disestablished 1871 Preceded by Succeeded by Dewa Province Akita Prefecture Today part ofAkita Prefecture Kubota Castle, the seat of th...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أبريل 2021) مروجالتسمية للأنثى مروجة فرع من صاحب أعمال المجال ترفيه تعديل - تعديل مصدري...