Mass-to-charge ratio

Beam of electrons moving in a circle in a Teltron tube, due to the presence of a magnetic field. Purple light is emitted along the electron path, due to the electrons colliding with gas molecules in the bulb. Mass-to-charge ratio of the electron can be measured in this apparatus by comparing the radius of the purple circle, the strength of the magnetic field, and the voltage on the electron gun. The mass and charge cannot be separately measured this way—only their ratio.
Mass-to-charge ratio
Common symbols
m/Q
SI unitkg/C
In SI base unitskgA−1s−1
Dimension

The mass-to-charge ratio (m/Q) is a physical quantity relating the mass (quantity of matter) and the electric charge of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrodynamics of charged particles, e.g. in electron optics and ion optics.

It appears in the scientific fields of electron microscopy, cathode ray tubes, accelerator physics, nuclear physics, Auger electron spectroscopy, cosmology and mass spectrometry.[1] The importance of the mass-to-charge ratio, according to classical electrodynamics, is that two particles with the same mass-to-charge ratio move in the same path in a vacuum, when subjected to the same electric and magnetic fields.

Some disciplines use the charge-to-mass ratio (Q/m) instead, which is the multiplicative inverse of the mass-to-charge ratio. The CODATA recommended value for an electron is Q/m = −1.75882000838(55)×1011 C⋅kg−1.[2]

Origin

When charged particles move in electric and magnetic fields the following two laws apply:

  • Lorentz force law:
  • Newton's second law of motion:

where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

This differential equation is the classic equation of motion for charged particles. Together with the particle's initial conditions, it completely determines the particle's motion in space and time in terms of m/Q. Thus mass spectrometers could be thought of as "mass-to-charge spectrometers". When presenting data in a mass spectrum, it is common to use the dimensionless m/z, which denotes the dimensionless quantity formed by dividing the mass number of the ion by its charge number.[1]

Combining the two previous equations yields:

This differential equation is the classic equation of motion of a charged particle in a vacuum. Together with the particle's initial conditions, it determines the particle's motion in space and time. It immediately reveals that two particles with the same m/Q ratio behave in the same way. This is why the mass-to-charge ratio is an important physical quantity in those scientific fields where charged particles interact with magnetic or electric fields.

Exceptions

There are non-classical effects that derive from quantum mechanics, such as the Stern–Gerlach effect that can diverge the path of ions of identical m/Q.

Symbols and units

The IUPAC-recommended symbols for mass and charge are m and Q, respectively,[3] however using a lowercase q for charge is also very common. Charge is a scalar property, meaning that it can be either positive (+) or negative (−). The Coulomb (C) is the SI unit of charge; however, other units can be used, such as expressing charge in terms of the elementary charge (e). The SI unit of the physical quantity m/Q is kilogram per coulomb.

Mass spectrometry and m/z

The units and notation above are used when dealing with the physics of mass spectrometry; however, the m/z notation is used for the independent variable in a mass spectrum.[4] This notation eases data interpretation since it is numerically more related to the dalton.[1] For example, if an ion carries one charge the m/z is numerically equivalent to the molecular or atomic mass of the ion in daltons (Da), where the numerical value of m/Q is abstruse. The m refers to the molecular or atomic mass number (number of nucleons) and z to the charge number of the ion; however, the quantity of m/z is dimensionless by definition.[4] An ion with a mass of 100 Da (daltons) (m = 100) carrying two charges (z = 2) will be observed at m/z 50. However, the empirical observation m/z 50 is one equation with two unknowns and could have arisen from other ions, such as an ion of mass 50 Da carrying one charge. Thus, the m/z of an ion alone neither infers mass nor the number of charges. Additional information, such as the mass spacing between mass isotopomers or the relationship between multiple charge states, is required to assign the charge state and infer the mass of the ion from the m/z. This additional information is often but not always available. Thus, the m/z is primarily used to report an empirical observation in mass spectrometry. This observation may be used in conjunction with other lines of evidence to subsequently infer the physical attributes of the ion, such as mass and charge. On rare occasions, the thomson has been used as a unit of the x-axis of a mass spectrum.

History

In the 19th century, the mass-to-charge ratios of some ions were measured by electrochemical methods.

The first attempt to measure the mass-to-charge ratio of cathode ray particles, assuming them to be ions, was made in 1884-1890 by German-born British physicist Arthur Schuster. He put an upper limit of 10^10 coul/kg,[5] but even that resulted in much greater value than expected, so little credence was given to his calculations at the time.

In 1897, the mass-to-charge ratio of the electron was first measured by J. J. Thomson.[6] By doing this, he showed that the electron was in fact a particle with a mass and a charge, and that its mass-to-charge ratio was much smaller than that of the hydrogen ion H+. In 1898, Wilhelm Wien separated ions (canal rays) according to their mass-to-charge ratio with an ion optical device with superimposed electric and magnetic fields (Wien filter). In 1901 Walter Kaufman measured the increase of electromagnetic mass of fast electrons (Kaufmann–Bucherer–Neumann experiments), or relativistic mass increase in modern terms. In 1913, Thomson measured the mass-to-charge ratio of ions with an instrument he called a parabola spectrograph.[7] Today, an instrument that measures the mass-to-charge ratio of charged particles is called a mass spectrometer.

Charge-to-mass ratio

B is uniform throughout; E exists only where shown.

The charge-to-mass ratio (Q/m) of an object is, as its name implies, the charge of an object divided by the mass of the same object. This quantity is generally useful only for objects that may be treated as particles. For extended objects, total charge, charge density, total mass, and mass density are often more useful.

Derivation: or

Since , or

Equations (1) and (2) yield

Significance

In some experiments, the charge-to-mass ratio is the only quantity that can be measured directly. Often, the charge can be inferred from theoretical considerations, so the charge-to-mass ratio provides a way to calculate the mass of a particle.

Often, the charge-to-mass ratio can be determined by observing the deflection of a charged particle in an external magnetic field. The cyclotron equation, combined with other information such as the kinetic energy of the particle, will give the charge-to-mass ratio. One application of this principle is the mass spectrometer. The same principle can be used to extract information in experiments involving the cloud chamber.

The ratio of electrostatic to gravitational forces between two particles will be proportional to the product of their charge-to-mass ratios. It turns out that gravitational forces are negligible on the subatomic level, due to the extremely small masses of subatomic particles.

Electron

The electron charge-to-mass quotient, , is a quantity that may be measured in experimental physics. It bears significance because the electron mass me is difficult to measure directly, and is instead derived from measurements of the elementary charge e and . It also has historical significance; the Q/m ratio of the electron was successfully calculated by J. J. Thomson in 1897—and more successfully by Dunnington, which involves the angular momentum and deflection due to a perpendicular magnetic field. Thomson's measurement convinced him that cathode rays were particles, which were later identified as electrons, and he is generally credited with their discovery.

The CODATA recommended value is −e/⁠me = −1.75882000838(55)×1011 C⋅kg−1.[2] CODATA refers to this as the electron charge-to-mass quotient, but ratio is still commonly used.

There are two other common ways of measuring the charge-to-mass ratio of an electron, apart from Thomson and Dunnington's methods.

  1. The magnetron method: Using a GRD7 Valve (Ferranti valve),[dubiousdiscuss] electrons are expelled from a hot tungsten-wire filament towards an anode. The electron is then deflected using a solenoid. From the current in the solenoid and the current in the Ferranti Valve, e/m can be calculated.[citation needed]
  2. Fine beam tube method: A heater heats a cathode, which emits electrons. The electrons are accelerated through a known potential, so the velocity of the electrons is known. The beam path can be seen when the electrons are accelerated through a helium (He) gas. The collisions between the electrons and the helium gas produce a visible trail. A pair of Helmholtz coils produces a uniform and measurable magnetic field at right angles to the electron beam. This magnetic field deflects the electron beam in a circular path. By measuring the accelerating potential (volts), the current (amps) to the Helmholtz coils, and the radius of the electron beam, e/m can be calculated.[8]

Zeeman Effect

The charge-to-mass ratio of an electron may also be measured with the Zeeman effect, which gives rise to energy splittings in the presence of a magnetic field B:

Here mj are quantum integer values ranging from −j to j, with j as the eigenvalue of the total angular momentum operator J, with[2]

where S is the spin operator with eigenvalue s and L is the angular momentum operator with eigenvalue l. gJ is the Landé g-factor, calculated as

The shift in energy is also given in terms of frequency υ and wavelength λ as

Measurements of the Zeeman effect commonly involve the use of a Fabry–Pérot interferometer, with light from a source (placed in a magnetic field) being passed between two mirrors of the interferometer. If δD is the change in mirror separation required to bring the mth-order ring of wavelength λ + Δλ into coincidence with that of wavelength λ, and ΔD brings the (m + 1)th ring of wavelength λ into coincidence with the mth-order ring, then

It follows then that

Rearranging, it is possible to solve for the charge-to-mass ratio of an electron as

See also

References

  1. ^ a b c IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "mass-to-charge ratio, m/z in mass spectrometry". doi:10.1351/goldbook.M03752
  2. ^ a b c "2022 CODATA Value: electron charge to mass quotient". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  3. ^ International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Oxford: Blackwell Science. ISBN 0-632-03583-8. pp. 4,14. Electronic version.
  4. ^ a b Compiled by A. D. McNaught and A. Wilkinson (1997). "Mass-to-charge ratio in mass spectrometry, mz". IUPAC. Compendium of Chemical Terminology, 2nd ed. (the –"––Gold Book"). Oxford: Blackwell Scientific Publications. doi:10.1351/goldbook.M03752. ISBN 978-0-9678550-9-7.
  5. ^ https://edisciplinas.usp.br/pluginfile.php/7740105/mod_resource/content/1/projectphysicsun00fjam.pdf
  6. ^ J. J. Thomson (1856–1940) Philosophical Magazine, 44, 293 (1897).
  7. ^ Joseph John Thomson (1856–1940) Proceedings of the Royal Society A 89, 1–20 (1913) [as excerpted in Henry A. Boorse & Lloyd Motz, The World of the Atom, Vol. 1 (New York: Basic Books, 1966)]
  8. ^ PASCO scientific, Instruction Manual and Experimental guide for the PASCO scientific Model SE-9638, pg. 1.

Bibliography

  • Szilágyi, Miklós (1988). Electron and ion optics. New York: Plenum Press. ISBN 978-0-306-42717-6.
  • Septier, Albert L. (1980). Applied charged particle optics. Boston: Academic Press. ISBN 978-0-12-014574-4.
  • International vocabulary of basic and general terms in metrology =: Vocabulaire international des termes fondamentaux et généraux de métrologie. International Organization for Standardization. 1993. ISBN 978-92-67-01075-5.
  • IUPAP Red Book SUNAMCO 87-1 "Symbols, Units, Nomenclature and Fundamental Constants in Physics" (does not have an online version)
  • Symbols Units and Nomenclature in Physics IUPAP-25, E.R. Cohen & P. Giacomo, Physics 146A (1987) 1–68

Read other articles:

Jonah Hauer-KingHauer-King in 2019LahirJonah Andre Hauer-King30 Mei 1995 (umur 28)Islington, London, InggrisPendidikanSt John's College, CambridgePekerjaanAktorTahun aktif2014–sekarang Jonah Andre Hauer-King (lahir 30 Mei 1995) adalah aktor asal Inggris. Dia telah membintangi beberapa film termasuk, The Last Photograph (2017) dan A Dog's Way Home (2019), dan muncul di miniseri televisi Howards End (2017), Little Women (2017) dan World on Fire (2019). Pada tahun 2023, ia berperan ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: TinkerTool – news · newspapers · books · scholar · JSTOR (May 2023) (Learn how and when to remove this template message) The topic of this article may no...

 

Koordinat: 41°08′N 48°29′E / 41.133°N 48.483°E / 41.133; 48.483 KarakyzKarakyzKoordinat: 41°08′N 48°29′E / 41.133°N 48.483°E / 41.133; 48.483Negara AzerbaijanRayonQubaZona waktuUTC+4 (AZT) • Musim panas (DST)UTC+5 (AZT) Karakyz adalah sebuah desa di Rayon Quba, Azerbaijan. Referensi Karakyz pada GEOnet Names Server lbsRayon QubaIbu kota: Quba Adur Afurca Ağbil Alekseyevka Alıc Alpan Amsar Amsarqışlaq Aşağı...

Bali United FCNama lengkapBali United Football ClubJulukanSerdadu TridatuBerdiri 1989 sebagai Putra Samarinda 2003, sebagai Persisam Putra Samarinda 15 Februari 2015 sebagai Bali United FC StadionStadion Kapten I Wayan Dipta(Kapasitas: 15.860[1])PemilikPieter Tanuri[2](40.96%)PT Asuransi Central Asia(8,88%)Ayu Patricia Rachmat(5,08%)Publik[3](IDX: BOLA)(45,08%)CEO Yabes TanuriManajer Michael Immanuel GeraldPelatih Stefano TecoAsisten Pelatih Stefan KeeltjesLigaLiga 120...

 

Pour les articles homonymes, voir Jadot. Yannick Jadot Yannick Jadot aux Journées d'été des Écologistes à Poitiers en 2021. Fonctions Sénateur français En fonction depuis le 2 octobre 2023(6 mois) Élection 24 septembre 2023 Circonscription Paris Groupe politique EST Député européen 14 juillet 2009 – 23 septembre 2023(14 ans, 1 mois et 29 jours) Élection 7 juin 2009 Réélection 25 mai 201426 mai 2019 Circonscription Ouest (2009-2019)France (depuis 2019) Lég...

 

Miloš Veljković Informasi pribadiNama lengkap Miloš VeljkovićTanggal lahir 26 September 1995 (umur 28)Tempat lahir Basel, SwissTinggi 188 cm (6 ft 2 in)Posisi bermain BekInformasi klubKlub saat ini Werder BremenNomor 13Karier senior*Tahun Tim Tampil (Gol)2016 – Werder Bremen 59 (1)Tim nasional2017 – Serbia 3 (0) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Miloš Veljković (lahir 26 September 1995) adalah seorang pemain sepak bola berkewa...

Hooray for LovePoster promosi untuk Hooray for LoveGenreRomansa, Komedi, DramaDitulis olehPark Hyun-jooSutradaraJoo Sung-wooPemeranLee Bo-youngLee Tae-sungJin Yi-hanNegara asalKorea SelatanBahasa asliKoreaJmlh. episode57ProduksiProduserKim Kyung-miLokasi produksiKoreaDurasiSabtu dan Minggu pukul 21:45 (WSK)Rumah produksiKim Jong-hak ProductionRilis asliJaringanMunhwa Broadcasting CorporationRilis16 Juli 2011 (2011-07-16) –29 Januari 2012 (2012-1-29) Hooray for LoveHangul애�...

 

John Cornyn Portrait officiel de John Cornyn en 2017. Fonctions Sénateur des États-Unis En fonction depuis le 1er décembre 2002(21 ans, 4 mois et 12 jours) Élection 5 novembre 2002 Réélection 4 novembre 20084 novembre 20143 novembre 2020 Circonscription Texas Législature 107e, 108e, 109e, 110e, 111e, 112e, 113e, 114e, 115e, 116e, 117e et 118e Groupe politique Républicain Prédécesseur Phil Gramm Majority whip au Sénat des États-Unis 3 janvier 2015 – 3 janvier 2019...

 

Sunidhi ChauhanChauhan di peluncuran The Voice India pada 2015LahirNidhi Chauhan14 Agustus 1983 (umur 40)New Delhi, IndiaTempat tinggalMumbai, Maharashtra, IndiaKebangsaanIndiaPekerjaanPenyanyiTahun aktif1996–sekarangKota asalDelhi, IndiaSuami/istri Bobby Khan ​ ​(m. 2002; bercerai 2003)​ Hitesh Sonik ​(m. 2012)​ Karier musikGenre Pop Filmi InstrumenVokalLabel Universal Times Music Sony Music Sarega...

Distributed multimedia communications platform JamiDeveloper(s)Savoir-faire Linux Inc.Preview release(s) [±]Android 20210813 (August 13, 2021; 2 years ago (2021-08-13)[1]) [±] Desktop 20201230 (December 30, 2020; 3 years ago (2020-12-30)[2]) [±] iOS 20210104 (January 4, 2021; 3 years ago (2021-01-04)[3]) [±] Repositorygit.jami.net Written inJava, Kotlin, Python, Shell,...

 

信徒Believe类型奇幻、科幻开创阿方索·卡隆主演 Johnny Sequoyah Jake McLaughlin Delroy Lindo 凯尔·麦克拉克伦 西耶娜·盖尔利 鄭智麟 Tracy Howe Arian Moayed 国家/地区美国语言英语季数1集数12每集长度43分钟制作执行制作 阿方索·卡隆 J·J·艾布拉姆斯 Mark Friedman 布赖恩·伯克 机位多镜头制作公司坏机器人制片公司华纳兄弟电视公司播出信息 首播频道全国广播公司播出日期2014年3月10日...

 

WTA Argentine Open 1978Singolare Sport Tennis Vincitore Caroline Stoll Finalista Emilse Rapponi Punteggio 6-3, 6-2 Tornei Singolare Singolare   Doppio Doppio Voce principale: WTA Argentine Open 1978. Il singolare del torneo di tennis WTA Argentine Open 1978, facente parte del WTA Tour 1978, ha avuto come vincitrice Caroline Stoll che ha battuto in finale Emilse Rapponi 6-3, 6-2. Indice 1 Teste di serie 2 Tabellone 2.1 Legenda 2.2 Finale 2.3 Parte alta 2.4 Parte bassa 3 Collegamenti este...

American football player (born 1974) American football player Amani ToomerToomer in February 2005No. 89, 81Position:Wide receiverPersonal informationBorn: (1974-09-08) September 8, 1974 (age 49)Berkeley, California, U.S.Height:6 ft 3 in (1.91 m)Weight:203 lb (92 kg)Career informationHigh school:De La Salle (Concord, California)College:Michigan (1992–1995)NFL draft:1996 / Round: 2 / Pick: 34Career history New York Giants (1996–2008) Kansas ...

 

A frameless cabinet In cabinetmaking, frameless construction of cabinets uses flat panels of engineered wood — usually particle board, plywood or medium-density fibreboard — rather than the older frame and panel construction. A common construction method for frameless cabinets originated in Europe after World War II and is known as the 32-mm system or European system.[1] The name comes from the 32-millimetre spacing between the system holes used for construction and installation o...

 

Underground coal gasificationProcess typechemicalIndustrial sector(s)oil and gas industrycoal industryFeedstockcoalProduct(s)coal gasLeading companiesAfricaryLinc EnergyCarbon EnergyMain facilitiesAngren Power Station (Uzbekistan)Majuba Power Station (South Africa)Chinchilla Demonstration Facility (Australia)InventorCarl Wilhelm SiemensYear of invention1868Developer(s)African Carbon EnergyErgo Exergy TechnologiesSkochinsky Institute of Mining Underground coal gasification (UCG) is an industr...

40th season of the domestic cup competition of French basketball French Basketball CupThe Final was played at the AccorHotels ArenaSeason2016–17DurationSeptember 13, 2016 – April 22, 2017Number of games55Number of teams56FinalsChampionsNanterre 92 (2nd title)  Runners-upLe MansAwardsFinal MVP Heiko Schaffartzik← 2015–16 2017–18 → The 2016–17 French Basketball Cup season (French: 2016–17 Coupe de France de Basket) was the 40th season of the domestic cup competition of...

 

مصعب اللحام معلومات شخصية الاسم الكامل مصعب اللحام الميلاد 20 مايو 1991 (العمر 33 سنة)إربد الطول 1.70 م (5 قدم 7 بوصة) مركز اللعب وسط هجومي الجنسية الأردن  معلومات النادي النادي الحالي الحسين الرقم 10 مسيرة الشباب سنوات فريق 2006-2009 الرمثا المسيرة الاحترافية1 سنوات فريق مشا...

 

Ritratto di Michele Puccini Michele Puccini (Lucca, 27 novembre 1813 – Lucca, 23 gennaio 1864) è stato un compositore italiano del XIX secolo. Indice 1 Biografia 2 Bibliografia 3 Altri progetti 4 Collegamenti esterni Biografia Michele Puccini, figlio del compositore Domenico Puccini, fu direttore dell'orchestra della corte ducale di Lucca, organista presso la Cattedrale di San Martino e compositore di opere e messe. Insegnò e poi diresse l'Istituto Musicale di Lucca allora intitolato a Gi...

نصمعلومات عامةصنف فرعي من تسجيلعمل مكتوب جزء من لغةمدونة نصيةline of writing (en) كتاب ممثلة بـ لغةنظام كتابة مظهر لـ كتابة لديه جزء أو أجزاء محرفline of writing (en) تعديل - تعديل مصدري - تعديل ويكي بيانات كلمة «النص» (text): تستخدم في علم اللغويات للإشارة إلى أي فقرة مكتوبة أو منطوقة مع الرغم �...

 

此條目需要更新。 (2016年1月15日)請更新本文以反映近況和新增内容。完成修改後請移除本模板。奈博伊沙·斯特法诺维奇Небојша Стефановић塞尔维亚内政部長现任就任日期2014年4月27日总理亞歷山大·武契奇安娜·布納比奇前任伊维察·达契奇塞爾維亞副总理现任就任日期2016年8月11日总理亞歷山大·武契奇安娜·布納比奇前任Kori Udovički国会主席任期2012年7月23日—2014年4�...