A major drawback of malonic ester synthesis is that the alkylation stage can also produce dialkylated structures. This makes separation of products difficult and yields lower.[3]
Mechanism
The carbons alpha to carbonyl groups can be deprotonated by a strong base. The carbanion formed can undergo nucleophilic substitution on the alkyl halide, to give the alkylated compound. On heating, the di-ester undergoes thermal decarboxylation, yielding an acetic acid substituted by the appropriate R group.[1] Thus, the malonic ester can be thought of being equivalent to the −CH2COOH synthon.
The esters chosen are usually the same as the base used, i.e. ethyl esters with sodium ethoxide. This is to prevent scrambling by transesterification.
Variations
Dialkylation
The ester may be dialkylated if deprotonation and alkylation are repeated before the addition of aqueous acid.[citation needed]