Loop integral

In quantum field theory and statistical mechanics, loop integrals are the integrals which appear when evaluating the Feynman diagrams with one or more loops by integrating over the internal momenta.[1] These integrals are used to determine counterterms, which in turn allow evaluation of the beta function, which encodes the dependence of coupling for an interaction on an energy scale .

One-loop integral

Generic formula

A generic one-loop integral, for example those appearing in one-loop renormalization of QED or QCD may be written as a linear combination of terms in the form

where the are 4-momenta which are linear combinations of the external momenta, and the are masses of interacting particles. This expression uses Euclidean signature. In Lorentzian signature the denominator would instead be a product of expressions of the form .

Using Feynman parametrization, this can be rewritten as a linear combination of integrals of the form

where the 4-vector and are functions of the and the Feynman parameters. This integral is also integrated over the domain of the Feynman parameters. The integral is an isotropic tensor and so can be written as an isotropic tensor without dependence (but possibly dependent on the dimension ), multiplied by the integral

Note that if were odd, then the integral vanishes, so we can define .

Regularizing the integral

Cutoff regularization

In Wilsonian renormalization, the integral is made finite by specifying a cutoff scale . The integral to be evaluated is then

where is shorthand for integration over the domain . The expression is finite, but in general as , the expression diverges.

Dimensional regularization

The integral without a momentum cutoff may be evaluated as

where is the Beta function. For calculations in the renormalization of QED or QCD, takes values and .

For loop integrals in QFT, actually has a pole for relevant values of and . For example in scalar theory in 4 dimensions, the loop integral in the calculation of one-loop renormalization of the interaction vertex has . We use the 'trick' of dimensional regularization, analytically continuing to with a small parameter.

For calculation of counterterms, the loop integral should be expressed as a Laurent series in . To do this, it is necessary to use the Laurent expansion of the Gamma function,

where is the Euler–Mascheroni constant. In practice the loop integral generally diverges as .

For full evaluation of the Feynman diagram, there may be algebraic factors which must be evaluated. For example in QED, the tensor indices of the integral may be contracted with Gamma matrices, and identities involving these are needed to evaluate the integral. In QCD, there may be additional Lie algebra factors, such as the quadratic Casimir of the adjoint representation as well as of any representations that matter (scalar or spinor fields) in the theory transform under.

Examples

Scalar field theory

φ4 theory

The starting point is the action for theory in is

Where . The domain is purposefully left ambiguous, as it varies depending on regularisation scheme.

The Euclidean signature propagator in momentum space is

The one-loop contribution to the two-point correlator (or rather, to the momentum space two-point correlator or Fourier transform of the two-point correlator) comes from a single Feynman diagram and is

This is an example of a loop integral.

If and the domain of integration is , this integral diverges. This is typical of the puzzle of divergences which plagued quantum field theory historically. To obtain finite results, we choose a regularization scheme. For illustration, we give two schemes.

Cutoff regularization: fix . The regularized loop integral is the integral over the domain and it is typical to denote this integral by

This integral is finite and in this case can be evaluated.

Dimensional regularization: we integrate over all of , but instead of considering to be a positive integer, we analytically continue to , where is small. By the computation above, we showed that the integral can be written in terms of expressions which have a well-defined analytic continuation from integers to functions on : specifically the gamma function has an analytic continuation and taking powers, , is an operation which can be analytically continued.

See also

References

  1. ^ Peskin, Michael E.; Schroeder, Daniel V. (1995). An Introduction to Quantum Field Theory. ISBN 9780201503975.

Further reading

  • Vladimir A. Smirnov: "Evaluating Feynman Integrals", Springer,ISBN 978-3-540239338 (2004).
  • Vladimir A. Smirnov: "Feynman Integral Calculus", Springer, ISBN 978-3-540306108 (2006).
  • Vladimir A. Smirnov: "Analytic Tools for Feynman Integrals", Springer, ISBN 978-3642348853 (2013).
  • Johannes Blümlein and Carsten Schneider (Eds.): "Anti-Differentiation and the Calculation of Feynman Amplitudes", Springer, ISBN 978-3-030-80218-9 (2021).
  • Stefan Weinzierl: "Feynman Integrals: A Comprehensive Treatment for Students and Researchers", Springer, ISBN 978-3-030-99560-7 (2023).

Read other articles:

Sirwal, juga saroual, [1] [2] seroual atau serouel [3] (bahasa Arab: سِرْوَال (sirwāl); Turki: şalvar, juga dikenal sebagai celana punjabi, dalam beberapa konteks, adalah bentuk celana panjang sebelum era Kristen. [4] Mereka biasanya dipakai di negara-negara Muslim, karena Muslim kita dilarang Isbal. tetapi juga secara luas di pedesaan Yunani dan tempat-tempat lain di Balkan yang dipengaruhi oleh Turki Ottoman sebelum Perang Dunia II. Celana tersebut awalnya bukan pakaian Arab tetap...

 

Wikipedia bahasa KannadaURLkn.wikipedia.orgTipeensiklopedia virtualRegistration (en)OpsionalLangueBahasa KannadaLisensiCreative Commons Atribusi-BerbagiSerupa 3.0 Tanpa Adaptasi dan Lisensi Dokumentasi Bebas GNU PemilikYayasan WikimediaService entry (en)2003 Wikipedia bahasa Kannada (bahasa Kannada: ವಿಕಿಪೀಡಿಯ) adalah wikipedia versi bahasa Kannada yang dimulai pada bulan Juni 2003.[1] Pada 16 Agustus 2009, Wikipedia bahasa Kannada telah memiliki lebih dari 6.800 art...

 

American politician (1901–1981) Paul C. JonesMember of the U.S. House of Representativesfrom Missouri's 10th districtIn officeNovember 2, 1948 – January 3, 1969Preceded byOrville ZimmermanSucceeded byBill BurlisonMember of the Missouri House of RepresentativesIn office1935–1937Member of the Missouri SenateIn office1937–1944 Personal detailsBorn(1901-03-12)March 12, 1901Kennett, Missouri, U.S.DiedFebruary 10, 1981(1981-02-10) (aged 79)Kennett, Missouri, U.S.Po...

Earth goddess in Hinduism For other uses, see Prithvi (disambiguation).PrithviGoddess of the earthAffiliationDevi, Bhudevi, Pancha BhutaPlanetEarthMantraOm Bhumhaya NamahMountCow, ElephantConsortDyausEquivalentsGreek equivalentGaiaRoman equivalentTellus MaterNorse equivalentJörðIndo-European equivalentDʰéǵʰōmThis article is about the Vedic goddess and consort of Dyaus. For the consort of Varaha, see Bhumi (goddess).Dharti Mata redirects here. For the 1938 film, see Dharti Mata (film). ...

 

Sultan Majid Afandiyev. Moskwa, 1936 Sultan Majid Afandiyev (bahasa Azerbaijan: Sultan Məcid Əfəndiyev; bahasa Rusia: Султан Меджид Эфендиев), juga disebut Efendiyev (26 Mei 1887 – 21 April 1938) adalah seorang revolusioner dan negarawan Azerbaijan. Ia merupakan salah satu pendiri Partai Komunis Azerbaijan.[1] Referensi ^ Huseyn Ahmadov. History of Azerbaijan school and pedagogical thought. Baku: Science and education, 2014. - p. 352....

 

Richard N. GoodwinLahirRichard Naradof Goodwin(1931-12-07)7 Desember 1931Boston, Massachusetts, Amerika SerikatMeninggal20 Mei 2018(2018-05-20) (umur 86)Concord, Massachusetts, Amerika SerikatKebangsaanAmerikaNama lainDick GoodwinPendidikanBrookline High SchoolAlmamaterSekolah Hukum HarvardUniversitas TuftsPekerjaanPenulisSuami/istriSandra Gail Leverant ​ ​(m. 1958; meninggal 1972)​ Doris Kearns Goodwin ​ ​(m. ...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) التقويممعلومات عامةنظام التشغيل ويندوز 1.0، ويندوز 3.1، ويندوز فيستا، ويندوز 8، ويندوز 10معلومات تقنيةالمل�...

 

Artikel ini bukan mengenai Kereta api Tawang Jaya. Kereta Api TawangalunKereta api Tawangalun meninggalkan Stasiun BangilInformasi umumJenis layananKereta api AntarkotaStatusBeroperasiDaerah operasiDaerah Operasi IX JemberPendahuluKA Rengganis (Banyuwangi Baru-Kediri pp)Mulai beroperasi2002Operator saat iniKereta Api IndonesiaJumlah penumpang harian1.500 penumpang per hari[butuh rujukan]Lintas pelayananStasiun awalKetapangStasiun akhirMalang Kota LamaJarak tempuh314 kmWaktu tempuh rer...

 

博里萨夫·约维奇攝於2009年 南斯拉夫社會主義聯邦共和國第12任總統任期1990年5月15日—1991年5月15日总理安特·马尔科维奇前任亚内兹·德尔诺夫舍克继任塞吉多·巴伊拉莫维奇(英语:Sejdo Bajramović) (代任)第12任不结盟运动秘书长任期1990年5月15日—1991年5月15日前任亚内兹·德尔诺夫舍克继任斯捷潘·梅西奇第3任塞尔维亚常驻南斯拉夫社会主义联邦共和国主席团代表任�...

1965 Belgian filmPinocchio in Outer SpaceDVD CoverDirected byRay GoossensWritten byFred LaddProduced byFred LaddRaymond LeblancNorm PrescottStarringArnold StangPeter LazerJess CainConrad JamesonMavis MimsCliff OwensMinerva PiousNorman RoseCinematographyFred LaddEdited byNorm PrescottMusic byRay GoossensDistributed byUniversal Pictures (USA)Release date 22 December 1965 (1965-12-22) Running time71 minCountriesBelgiumUnited StatesLanguagesEnglishFrench Pinocchio in Outer Space is...

 

Kipchak ethnic group of northwestern Uzbekistan For other black hats, see Black Klobuks. Not to be confused with Karapapakhs. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2014) (Learn how and when to remove this message) Ethnic group KarakalpaksQaraqalpaqlar, Қарақалпақлар, قاراقلپقلرFlag of KarakalpakstanKarakalpak boys race...

 

Football league seasonSingapore Premier LeagueSeason2024–25Dates11 May 2024 – 25 May 2025Matches played15Goals scored71 (4.73 per match)Top goalscorerTomoyuki Doi (8 goals)Biggest home winGeylang International 7-1 Young Lions FC (25 May 2024)Biggest away winTanjong Pagar United 0-5 Balestier Khalsa (19 May 2024)Highest scoringGeylang International 4-4 BG Tampines Rovers (17 May 2024)Geylang International 7-1 Young Lions FC (25 May 2024)Hougang United 2-6 Geylang International (14 Jun...

For assistance with IPA transcriptions of Danish for Wikipedia articles, see Help:IPA/Danish. For the transcription system based on the Danish orthography, see Dania transcription. Systematic organization of spoken sounds of the Danish language This article contains phonetic transcriptions in the International Phonetic Alphabet (IPA). For an introductory guide on IPA symbols, see Help:IPA. For the distinction between [ ], / / and ⟨ ⟩, see IPA § Brack...

 

British actor Allan JeayesBornAllan John Jeayes(1885-01-19)19 January 1885Barnet, Hertfordshire, EnglandDied20 September 1963(1963-09-20) (aged 78)Marylebone, London, EnglandOccupationActorYears active1918–1962 Allan John Jeayes (19 January 1885 – 20 September 1963) was an English stage and film actor. Jeayes was born in Barnet, Hertfordshire,[1] the son of Isaac Herbert Jeayes, archivist and Assistant Keeper of Manuscripts at the British Museum.[2] Jeayes w...

 

Town in Brandenburg, GermanyNeuruppin TownStreet with Holy Trinity Church Coat of armsLocation of Neuruppin within Ostprignitz-Ruppin district Neuruppin Show map of GermanyNeuruppin Show map of BrandenburgCoordinates: 52°55′59″N 12°48′00″E / 52.93306°N 12.80000°E / 52.93306; 12.80000CountryGermanyStateBrandenburgDistrictOstprignitz-Ruppin Government • Mayor (2020–28) Nico Ruhle[1] (SPD)Area • Total303.32 km2 (117.1...

Class of road in Sweden Sweden's network of national roads in 2008, European routes here included Number sign for national roads This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Swedish national road – news · newspapers · books · scholar · JSTOR (October 2017) (Learn how and when to remove this message) Natio...

 

Pour les articles homonymes, voir Ptolémée (homonymie). Dynastie lagide Données clés Pays Égypte antique (Royaume lagide) Titres Basileus (roi), pharaon Fondation 323 avant notre èrePtolémée Ier Dépositions 30 avant notre èrePtolémée XV Césarion (Égypte)Cléopâtre Séléné II (Maurétanie) modifier La dynastie lagide (en grec ancien Λαγίδαι / Lagidai) ou ptolémaïque est une dynastie hellénistique issue du général macédonien Ptolémée, fils de Lago...

 

Disambiguazione – Se stai cercando l'analogo torneo femminile di tennis giocato all'ASB Tennis Centre, vedi ASB Classic (WTA). Auckland OpenAltri nomiASB ClassicHeineken Open Benson and Hedges Open Sport Tennis TipoSingolareDoppio CategoriaATP World Series (1990–1999)ATP International Series (2000–2008)ATP Tour 250 (2009–) FederazioneATP Paese Nuova Zelanda LuogoAuckland ImpiantoASB Tennis Centre SuperficieErba (1956–1977)Cemento (1978-oggi) DirettoreNicolas Lamperin CadenzaAn...

Sultanato di Adal Dati amministrativiLingue parlateafar, harari, ge'ez, somalo, arabo CapitaleZeila, fino al 1433 Dakkar, fino al 1520 Harar, fino al 1559 PoliticaForma di Statomonarchia Nascita1415 con Sultano SabiradDīn SaʿadadDīn Fine1559 con Sultano Barakat ʿUmarDīn Territorio e popolazioneBacino geograficoAfrica orientale EconomiaCommerci conAfrica nord-orientale, Medio Oriente, Penisola arabica, Europa, Asia meridionale EsportazioniAvorio, schiavi Religione e societàReligioni prem...

 

Buchloe urban municipality in Germany (en) Tempat Negara berdaulatJermanNegara bagian di JermanBavariaRegierungsbezirkSwabiaRural district of Bavaria (en) Ostallgäu NegaraJerman PendudukTotal13.904  (2022 )GeografiBagian dariVerwaltungsgemeinschaft Buchloe (en) dan Stimmkreis Marktoberdorf (en) Luas wilayah36,18 km² [convert: unit tak dikenal]Ketinggian627 m Organisasi politikAnggota dariAliansi Iklim (2002)Bayerischer Städtetag (en) Informasi tambahanKode pos86807 Zona waktuUTC+...