The Lockman Hole, or The Lockman Window, is an area of the sky in which minimal amounts of neutral hydrogengas are observed from the perspective of Earth. The Lockman Hole is a relatively clear window on distant objects, which makes it an attractive area of the sky for observational astronomy surveys. It is located near the pointer stars of the Big Dipper in the constellationUrsa Major and is ~15 square degrees in size.[1][2]
The Lockman Hole is named after its discoverer, astronomer F. Jay Lockman.
Location
The Lockman Hole is located at about RA 10h 45m, Dec. +58° and is defined by a region of low neutral hydrogen gas and dust column density.[3] Column density is a commonly used measure in astronomy for the quantity of a given chemical element or molecule in a certain direction. In this region, the typical column density of neutral hydrogen is NH = 0.6 x 1020 cm−2.[4] This column density is moderately lower than typical values near the galactic poles, where NH 1020 cm−2, and H I column densities of NH > 1021 cm−2 are common at low galactic latitudes and towards H I clouds.[5]
The region around B1950.0 RA 10h 45m Dec 57° 20′ has a minimum NH of 4.5 x 1019 cm−2.[3] There is a diffuse cloud covering half of the field.[3][6]
The Lockman Hole East is a subregion of the Lockman Hole centered at J2000.0 RA 10h 52m Dec +57°.[7]
The Lockman Hole North-west (LHNW) is a region that appears about as wide as the moon centered at J2000.0 RA 10h 34m Dec +57° 40′.,[8][9] with a column density of NH = 5.72 x 1019 cm−2.[5]
Neutral hydrogen is also associated with diffuse emission at infrared wavelengths that can confuse observations of faint infrared sources.
Observations
The relatively clear field of view offered by the Lockman Hole has allowed its use to view extremely distant regions of the universe. Observations by the Spectral and Photometric Imaging Receiver (SPIRE) instrument aboard the Herschel Space Telescope of the Lockman Hole have imaged thousands of extremely distant galaxies that appear as they did 10–12 billion years ago.[10]