Liana

Mixed-species tangle of lianas in tropical Australia
Lianas in Udawattakele, Sri Lanka
A canopy of Entada gigas that has formed over a monkey ladder vine (Bauhinia glabra) on Kauai, Hawaii
Liana tangle across a forest in the Western Ghats

A liana is a long-stemmed woody vine that is rooted in the soil at ground level and uses trees, as well as other means of vertical support, to climb up to the canopy in search of direct sunlight.[1] The word liana does not refer to a taxonomic grouping, but rather a habit of plant growth – much like tree or shrub. It comes from standard French liane, itself from an Antilles French dialect word meaning to sheave.[citation needed]

Ecology

Lianas are characteristic of tropical moist broadleaf forests (especially seasonal forests), but may be found in temperate rainforests and temperate deciduous forests. There are also temperate lianas, for example the members of the Clematis or Vitis (wild grape) genera. Lianas can form bridges amidst the forest canopy, providing arboreal animals, including ants and many other invertebrates, lizards, rodents, sloths, monkeys, and lemurs with paths across the forest. For example, in the Eastern tropical forests of Madagascar, many lemurs achieve higher mobility from the web of lianas draped amongst the vertical tree species. Many lemurs prefer trees with lianas because of their roots.[2]

Lianas do not derive nutrients directly from trees but live on and derive nutrients at the expense of trees. [3][4] Specifically, they greatly reduce tree growth[5] and tree reproduction,[6] greatly increase tree mortality,[7] prevent tree seedlings from establishing,[5] alter the course of regeneration in forests,[8] and ultimately decrease tree population growth rates.[9] For example, forests without lianas grow 150% more fruit; trees with lianas have twice the probability of dying.[10]

Lianas are uniquely adapted to living in such forests as they use the host tree, for stability, to reach to top of the canopy. Lianas directly damage hosts by mechanical abrasion and strangulation, render hosts more susceptible to ice and wind damage,[citation needed] and increase the probability that the host tree falls.[citation needed] Lianas also provide support for weaker trees when strong winds blow by laterally anchoring them to stronger trees.[11] However, they may be destructive in that when one tree falls, the connections made by the lianas may cause many other trees to fall.[11] Because of these negative effects, trees which remain free of lianas are at an advantage; some species have evolved characteristics which help them avoid or shed lianas.[12]

Some lianas attain to great length, such as Bauhinia sp. in Surinam which has grown as long as 600 meters (2000').[13][14] Hawkins has accepted a length of 1.5 km (1 mile) for an Entada phaseoloides.[15] The longest monocot liana is Calamus manan (or Calamus ornatus) at exactly 240 meters (787').[16] Dr. Francis E. Putz states that lianas (species not indicated) have weighed "hundreds of tons" and been a half mile (0.8 km) in length.[17] One way of distinguishing lianas from trees and shrubs is based on the stiffness, specifically, the Young's modulus of various parts of the stem. Trees and shrubs have young twigs and smaller branches which are quite flexible and older growth such as trunks and large branches which are stiffer. A liana often has stiff young growths and older, more flexible growth at the base of the stem.[18]

Examples

Some families and genera containing liana species include:

References

  1. ^ "liana". Encyclopædia Britannica.
  2. ^ Rendigs, A.; Radespiel, U.; Wrogemann, D.; Zimmermann, E. (2003). "Relationship between microhabitat structure and distribution of mouse lemurs (Microcebus spp.) in northwestern Madagascar". International Journal of Primatology. 24 (1): 47–64. doi:10.1023/A:1021494428294. S2CID 20661112.
  3. ^ "About Parasites". CDC.gov. Centers for Disease Control. 21 March 2022. Retrieved 2 April 2024. A parasite is an organism that lives on or in a host organism and gets its food from or at the expense of its host.
  4. ^ a b Schnitzer, S. A.; Bongers, F. (2002). "The ecology of lianas and their role in forests". Trends in Ecology and Evolution. 17 (5): 223–230. doi:10.1016/S0169-5347(02)02491-6.
  5. ^ a b Schnitzer, S. A.; Carson (2010). "Lianas suppress tree regeneration and diversity in treefall gaps". Ecology Letters. 13 (7): 849–857. Bibcode:2010EcolL..13..849S. doi:10.1111/j.1461-0248.2010.01480.x. PMID 20482581.
  6. ^ Wright, S. J.; Jaramillo, A. M.; Pavon, J.; Condit, R.; Hubbell, S. P.; Foster, R. B. (2005). "Reproductive size thresholds in tropical trees: variation among individuals, species and forests". Journal of Tropical Ecology. 21 (3): 307–315. doi:10.1017/S0266467405002294. S2CID 42171771.
  7. ^ Ingwell, L. L.; Wright, S. J.; Becklund, K. K.; Hubbell, S. P.; Schnitzer, S. A. (2010). "The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama". Journal of Ecology. 98 (4): 879–887. Bibcode:2010JEcol..98..879I. doi:10.1111/j.1365-2745.2010.01676.x.
  8. ^ Schnitzer, S. A.; Dalling, J. W.; Carson, W. P. (2000). "The impact of lianas on tree regeneration in tropical forest canopy gaps: Evidence for an alternative pathway of gap-phase regeneration". Journal of Ecology. 88 (4): 655–666. Bibcode:2000JEcol..88..655S. doi:10.1046/j.1365-2745.2000.00489.x.
  9. ^ Visser, Marco D.; Schnitzer, Stefan A.; Muller-Landau, Helene C.; Jongejans, Eelke; de Kroon, Hans; Comita, Liza S.; Hubbell, Stephen P.; Wright, S. Joseph; Zuidema, Pieter (2018). "Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites". Journal of Ecology. 106 (2): 781–794. Bibcode:2018JEcol.106..781V. doi:10.1111/1365-2745.12815. hdl:2066/176867. ISSN 0022-0477.
  10. ^ Landers, Jackson (13 June 2017). "Tarzan's Favorite Mode of Travel, the Liana Vine, Chokes Off a Tree's Ability to Bear Fruit". Smithsonian. Retrieved 20 June 2017.
  11. ^ a b Garrido-Pérez, E. I.; Dupuy, J. M.; Durán-García, R.; Gerold, G.; Schnitzer, S. A.; Ucan-May, M. (2008). "Structural effects of lianas and hurricane Wilma on trees in Yucatan peninsula, Mexico". Journal of Tropical Ecology. 24 (5): 559–562. doi:10.1017/S0266467408005221. S2CID 83919534.
  12. ^ Putz, F. E. (1984). "How trees avoid and shed lianas". Biotropica. 16 (1): 19–23. Bibcode:1984Biotr..16...19P. doi:10.2307/2387889. JSTOR 2387889.
  13. ^ Rohwer, Prof. Jens G. (2000). Tropical Plants of the World. New York: Sterling Pub. Co. Inc. p. 18.
  14. ^ Sanderson, Ivan T.; Loth, David (1965). Ivan Sanderson's Book of Great Jungles. New York: Simon and Schuster. p. 144.
  15. ^ Hawkins, R.E. editor (1986). Encyclopedia of Indian Natural History. Delhi: Oxford University Press. p. 199. {{cite book}}: |first= has generic name (help)
  16. ^ Richards, Dr. Paul W. (1952). Tropical Rain Forest. Cambridge. p. 102.{{cite book}}: CS1 maint: location missing publisher (link) quoting: Prof. Melchior Treub, Observations sur les Plantes Grimphantes de Jardin Botanique Buitenzorg, ANNALES de JARDIN BUITENZORG (1883) p. 175
  17. ^ Putz, Francis E. (October 1988). "Woody Vines and Tropical Forests". Fairchild Tropical Garden Bulletin. 43 (4): 7.
  18. ^ Lahaye, R.; Civeyrel, L.; Speck, T.; Rowe, N. P. (2005). "Evolution of shrub-like growth forms in the lianoid subfamily Secamonoideae (Apocynaceae s.l.) of Madagascar: phylogeny, biomechanics, and development". American Journal of Botany. 92 (8): 1381–96. doi:10.3732/ajb.92.8.1381. PMID 21646158.

See also

List of Longest Vines