Li Ye (mathematician)

Li Ye (Chinese: 李冶; Wade–Giles: Li Yeh; 1192–1279), born Li Zhi (Chinese: 李治), courtesy name Li Jingzhai (Chinese: 李敬斋),[1][2] was a Chinese mathematician, politician, and writer who published and improved the tian yuan shu method for solving polynomial equations of one variable.[1][3][4][5][6][7] Along with the 4th-century Chinese astronomer Yu Xi, Li Ye proposed the idea of a spherical Earth instead of a flat one before the advances of European science in the 17th century.

Name

Li Ye was born Li Zhi, but later changed his name to Li Ye to avoid confusion with the third Tang emperor who was also named Li Zhi, removing one stroke from his original name to change the character. His name is also sometimes written as Li Chih or Li Yeh. His literary name was Renqing (Chinese: 仁卿; Wade–Giles: Jen-ch’ing) and his appellation was Jingzhai (Chinese: 敬斋; Wade–Giles: Ching-chai).[1][2]

Life

Li Ye was born in Daxing (now Beijing). His father was a secretary to an officer in the Jurchen army. Li passed the civil service examination in 1230 at the age of 38, and was administrative prefect of Jun prefecture in Henan province until the Mongol invasion in 1233. He then lived in poverty in the mountainous Shanxi province. In 1248 he finished his most known work Ceyuan haijing (測圓海鏡, Sea mirror of circle measurements).[1][8] Li then returned to Hebei.

In 1257, Kublai Khan, grandson of Genghis Khan, ordered Li to give advice on science. In 1259, Li completed Yigu yanduan (益古演段, New steps in computation), also a mathematics text. After becoming Khan, Kublai twice offered Li government positions, but Li was too old and in ill health. In 1264, Li finally accepted a position at the Hanlin Academy, writing official histories. However, he had a political fallout and resigned after a few months, again citing ill health.[1] He spent his final years teaching at his home near Feng Lung mountain in Yuan, Hebei. Li told his son to burn all of his books except for Sea mirror of circle measurements.[1]

Mathematics

Ceyuan haijing

The master figure in Sea mirror of circle measurements, that all the problems use. It shows a circular city wall, inscribed in a right triangle and a square.

Ceyuan haijing (Sea mirror of circle measurements) is a collection of 170 problems, all related to the same example of a circular city wall inscribed in a right triangle and a square.[1][9] They often involve two people who walk on straight lines until they can see each other, meet or reach a tree in a certain spot. The purpose of book was to study intricate geometrical relations with algebra and provide solutions to equations.[10]

Many of the problems are solved by polynomial equations, which are represented using a method called tian yuan shu, "coefficient array method" or literally "method of the celestial unknown".[1][11] The method was known before him in some form. It is a positional system of rod numerals to represent polynomial equations.

For example, 2x2 + 18x − 316 = 0 is represented as

which is equal to in Arabic Numbers.

The (yuan) denotes the unknown x, so the numerals on that line mean 18x. The line below is the constant term (-316) and the line above is the coefficient of the quadratic (x2) term. The system accommodates arbitrarily high exponents of the unknown by adding more lines on top and negative exponents by adding lines below the constant term. Decimals can also be represented. Later, the line order was reversed so that the first line is the lowest exponent.

Li does not explain how to solve equations in general, but shows it with the example problems. Most of the equations can be reduced to the second or sometimes third order. It is often assumed that he used methods similar to Ruffini's rule and Horner scheme.

Yigu yanduan

Problem 8 in Yigu yanduan

Yigu yanduan (New steps in computation) is a work of more basic mathematics written soon after Li Ye completed Ceyuan haijing, and was probably written to help students who could not understand Sea mirror of circle measurements. Yigu yanduan consists of three volumes dedicated to solving geometrical problems on two tracks, through Tian yuan shu and geometry. It also contained algebraic problems, but with slightly different notations.[11]

Astronomy and shape of the earth

The huntian (渾天) theory of the celestial sphere stipulated that the earth was flat and square, while the heavens were spherical in shape, along with celestial bodies such as the sun and moon (described by 1st-century AD polymathic scientist and statesman Zhang Heng like a crossbow bullet and ball, respectively).[12] However, the idea of a flat earth was criticized by the Jin dynasty astronomer Yu Xi (fl. 307-345 AD), who suggested a rounded shape as an alternative.[13] In his Jingzhai gu zhin zhu (敬齋古今注),[14] Li Ye echoed Yu's idea that the Earth was spherical, similar in shape to the heavens but smaller in size, arguing that it could not be square since that would hinder the movement of the heavens and celestial bodies.[15]

However, the idea of a spherical earth was not accepted in mainstream Chinese science and cartography until the 17th century during the late Ming and early Qing periods, with the advent of evidence of European circumnavigation of the globe.[16] The flat Earth theory in Chinese science was finally overturned in the 17th-century. Jesuits in China also introduced the spherical Earth model advanced by ancient Greeks such as Philolaus and Eratosthenes[17] and presented in world maps such as Matteo Ricci's Kunyu Wanguo Quantu published in Ming-dynasty China in 1602.[18]

See also

References

  1. ^ a b c d e f g h Breard, Andrea. (Jan 01, 2021). "Li Ye: Chinese mathematician". Encyclopaedia Britannica. Accessed 7 February 2021.
  2. ^ a b "Li, Ye (1192-1279) 李, 冶 (1192-1279)" IdRef: Identifiants et Référentials pour l'enseignement supérieur et la recherche (French). Accessed 19 February 2018.
  3. ^ O'Connor, John J.; Robertson, Edmund F. (December 2003). "Li Zhi Biography". MacTutor History of Mathematics archive. University of St Andrews in Scotland. Retrieved 21 December 2009.
  4. ^ Ho, Peng Yoke (2000). Li, Qi and Shu: An Introduction to Science and Civilization in China (unabridged ed.). Courier Dover Publications. pp. 89–96. ISBN 0-486-41445-0.
  5. ^ Ho, Peng Yoke (2008). "Li Chih, also called Li Yeh". Complete Dictionary of Scientific Biography. Charles Scribner's Sons. Retrieved 2009-12-21. Via encyclopedia.com.
  6. ^ Lam Lay-Yong; Ang Tian-Se (September 1984). "Li Ye and his Yi Gu Yan Duan (old mathematics in expanded sections)". Archive for History of Exact Sciences. 29 (3). Berlin / Heidelberg: Springer: 237–266. doi:10.1007/BF00348622. S2CID 120593520.
  7. ^ Swetz, Frank (1996). "Enigmas of Chinese Mathematics". In Ronald Calinger (ed.). Vita mathematica: historical research and integration with teaching. MAA Notes. Vol. 40. Cambridge University Press. pp. 89–90. ISBN 0-88385-097-4.
  8. ^ Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, p. 40.
  9. ^ Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, pp. 44, 129.
  10. ^ Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, pp. 44-45.
  11. ^ a b Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, p. 45.
  12. ^ Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, pp. 216-218, 227.
  13. ^ Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, pp. 220, 498.
  14. ^ Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, p. 498; footnote i.
  15. ^ Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, p. 498.
  16. ^ Needham, Joseph; Wang, Ling. (1995) [1959]. Science and Civilization in China: Mathematics and the Sciences of the Heavens and the Earth, vol. 3, reprint edition. Cambridge: Cambridge University Press. ISBN 0-521-05801-5, pp. 498-499.
  17. ^ Cullen, Christopher. (1993). "Appendix A: A Chinese Eratosthenes of the Flat Earth: a Study of a Fragment of Cosmology in Huainanzi", in Major, John. S. (ed), Heaven and Earth in Early Han Thought: Chapters Three, Four, and Five of the Huananzi. Albany: State University of New York Press. ISBN 0-7914-1585-6, p. 269-270.
  18. ^ Baran, Madeleine (December 16, 2009). "Historic map coming to Minnesota". St. Paul, Minn.: Minnesota Public Radio. Retrieved 19 February 2018.

Further reading

  • Chan, Hok-Lam. 1997. “A Recipe to Qubilai Qa'an on Governance: The Case of Chang Te-hui and Li Chih”. Journal of the Royal Asiatic Society 7 (2). Cambridge University Press: 257–83.[1]
  1. ^ Chan, Hok-Lam (1997). "A Recipe to Qubilai Qa'an on Governance: The Case of Chang Te-hui and Li Chih". Journal of the Royal Asiatic Society. 7 (2): 257–283. ISSN 1356-1863.

Read other articles:

1914 battle of the Zaian War 32°51′27″N 05°37′21″W / 32.85750°N 5.62250°W / 32.85750; -5.62250 Battle of El HerriPart of the Zaian WarLocation of the battle shown on a 1953 map.Date13 November 1914LocationEl Herri, near Khénifra, MoroccoResult Zaian victoryBelligerents  France Zaian ConfederationCommanders and leaders René Laverdure † Mouha ou Hammou ZayaniStrength 43 officers and 1,187 men[1] Estimated by the French at 5,000 tribe...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Negara bagian dan wilayah federal di Malaysia – berita · surat kabar · buku · cendekiawan · JSTOR Pembagian administratif Malaysia Tingkat I Negara bagian • Wilayah persekutuan Tingkat II Distrik &...

 

Bandar Udara LloydminsterBandar Udara LloydminsterIATA: YLLICAO: CYLLWMO: 71871InformasiJenisPublicPengelolaCity of LloydminsterMelayaniLloydminster, AlbertaKetinggian dpl699 mdplSitus webwww.lloydminster.ca/airport.htmlPetaCYLLLokasi di AlbertaLandasan pacu Arah Panjang Permukaan kaki m 08/26 5,579 1,700 Asphalt 12/30 1,500 457 Turf Statistik (2010)Pergerakan pesawat12,857Sumber: Canada Flight Supplement[1]Environment Canada[2]Movements from Statistics Canada[3&...

Ajaccio Aiacciu BenderaLambang kebesaranAjaccio Lokasi di Region Korsika Ajaccio Koordinat: 41°55′36″N 8°44′13″E / 41.9267°N 8.7369°E / 41.9267; 8.7369NegaraPrancisRegionKorsikaDepartemenCorse-du-SudArondisemenAjaccioAntarkomunePays AjaccienPemerintahan • Wali kota (2008–2014) Simon RenucciLuas • Land182,03 km2 (3,167 sq mi) • Populasi265.153 • Kepadatan Populasi27,9/km2 (21/sq mi)Kode IN...

 

Bagian dari seriKosmologi fisik Ledakan Dahsyat · Alam semesta Umur alam semesta Kronologi alam semesta Alam semesta awal Masa Planck Masa penyatuan agung Nukleosintesis Big Bang Inflasi Zaman Kegelapan Latar belakang Cosmic background radiation (CBR) Gravitational wave background (GWB) Cosmic microwave background (CMB) · Cosmic neutrino background (CNB) Cosmic infrared background (INB) Ekspansi · Masa depan Hukum Hubble · Pergeseran merah Ekspansi alam semesta Metrik ...

 

  لمعانٍ أخرى، طالع تصفيات كأس العالم 2002 (توضيح). تصفيات كأس العالم 2002تفاصيل المسابقةالتواريخ4 مارس 2000 – 25 نوفمبر 2001الفرق199إحصائيات المسابقةالمباريات الملعوبة777الأهداف المسجلة2٬452 (3٫16 لكل مباراة)→ 1998 2006 ←   منتخبات تأهلت لكاس العالم   منتخبات فشلت في ا...

الاتحاد السويدي لكرة القدم الاسم المختصر SvFF الرياضة كرة القدم أسس عام 1904 (منذ 120 سنة) المقر بلدية سولنا  الانتسابات الفيفا : 1904 اليويفا  : 1954 رمز الفيفا GEO  الموقع الرسمي www.svenskfotboll.se تعديل مصدري - تعديل   تأسس الاتحاد السويدي لكرة القدم (بالسويدية: Svenska Fotbollförbundet) في...

 

Shawn AshmoreLahirShawn Robert Ashmore7 Oktober 1979 (umur 44)Richmond, British Columbia, KanadaPekerjaanAktorTahun aktif1991 – sekarang Shawn Robert Ashmore (lahir 7 Oktober 1979)[1] adalah aktor asal Kanada. Ia dikenal karena perannya sebagai Jake dalam serial televisi Animorphs dan Iceman dalam film X-Men. Ia adalah saudara kembar dari aktor Aaron Ashmore. Filmografi Film Tahun Film Peran Catatan 1991 Married to It Student in pageant 1993 Gross Misconduct young Brian S...

 

Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Pemilihan Member Single ke-10 JKT48Logo Pemilihan Member Single ke-10 JKT48 bersama Honda The Power of DreamsTanggal26 Maret 2015 - 30 April 2015 (pemungutan suara)2 Mei 2015 (...

British physicist For other people named Paul Davies, see Paul Davies (disambiguation). Paul DaviesAMDavies in 2016BornPaul Charles William Davies (1946-04-22) 22 April 1946 (age 77)London, United KingdomAlma materUniversity College LondonKnown forFulling–Davies–Unruh effectBunch–Davies vacuum stateMoving MirrorsAwardsTempleton Prize (1995)Kelvin Medal (2001)Faraday Prize (2002)Klumpke-Roberts Award (2011)Scientific careerFieldsPhysicsInstitutionsArizona State UniversityU...

 

سيرغي أوستابينكو معلومات شخصية الميلاد 23 فبراير 1986 (العمر 38 سنة)ألماتي الطول 1.90 م (6 قدم 3 بوصة) مركز اللعب مهاجم الجنسية كازاخستان  الرقم 21 مسيرة الشباب سنوات فريق FC Alma-Ata [الإنجليزية]‏ المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2003−2006 FC Alma-Ata [الإنجليزية]‏ 98 (21)...

 

American politician For the NYPD Police Commissioner, see Douglas Imrie McKay. For the ice hockey player, see Doug McKay. For the Australian cricketer, see Douglas McKay (cricketer). Douglas McKay35th United States Secretary of the InteriorIn officeJanuary 21, 1953 – April 15, 1956PresidentDwight D. EisenhowerPreceded byOscar L. ChapmanSucceeded byFred A. Seaton25th Governor of OregonIn officeJanuary 10, 1949 – December 27, 1952Preceded byJohn HallSucceeded byPaul L. Pat...

Van Cliburn nel 1962 a Caesarea in Israele. 2 volte vincitore ai Grammy awards Van Cliburn, pseudonimo di Harvey Lavan Cliburn Jr. (Shreveport, 12 luglio 1934 – Fort Worth, 27 febbraio 2013), è stato un pianista statunitense. È noto al grande pubblico per aver partecipato al primo Concorso internazionale Čajkovskij (inaugurato a Mosca nel 1958) - la cui giuria era tra gli altri composta anche da giganti della tastiera quali Svjatoslav Richter ed Ėmil' Gilel's[1] - e averlo vinto...

 

English cricketer and rugby union player John RaphaelRaphael in 1909Personal informationFull nameJohn Edward RaphaelBorn(1882-04-30)30 April 1882Brussels, BelgiumDied11 June 1917(1917-06-11) (aged 35)Rémy, FranceBattingRight-handedBowlingRight-arm slow-mediumRoleBatsmanRelationsRichard Raphael (cousin)Domestic team information YearsTeam1901–1902London County1903–1909Surrey1903–1905Oxford University1905–1913MCC Career statistics Competition First-class Matches 77 Runs scored...

 

American television series For other uses, see Highway to Heaven (disambiguation). Highway to HeavenGenreFantasyFamily dramaCreated byMichael LandonDirected byMichael LandonVictor FrenchDan GordonWilliam F. ClaxtonStarringMichael LandonVictor FrenchComposerDavid RoseCountry of originUnited StatesOriginal languageEnglishNo. of seasons5No. of episodes111 (list of episodes)ProductionExecutive producerMichael LandonProducerKent McCrayCamera setupSingle-cameraRunning time48–49 minutesProduction ...

SDN 15 BotumoitoSekolah Dasar Negeri 15 BotumoitoInformasiJenisSekolah DasarNomor Pokok Sekolah Nasional40502693Kepala SekolahRahmin Abd. DunggioModeratorNurhayati HilalaJumlah kelas5Rentang kelasI-VIKurikulumkurikulum KTSPStatusNegeriAlamatLokasi, Boalemo, Gorontalo, IndonesiaTel./Faks.081356101330Koordinat0°30′43″N 122°12′48″E / 0.5119350°N 122.2134000°E / 0.5119350; 122.2134000Situs webhttp://pgribotumoito.blogspot.comSurelrahmin.dunggio@y...

 

State park in Oregon Fogarty Creek State Recreation AreaView of Fogarty Creek, the US Highway 101 overpass, and the Pacific OceanShow map of OregonShow map of the United StatesTypePublic, stateLocationLincoln County, OregonNearest cityLincoln CityCoordinates44°50′32″N 124°02′44″W / 44.842335°N 124.04567°W / 44.842335; -124.04567[1]Area165.08 acres (66.81 ha)[2]Created1950s[3]Operated byOregon Parks and Recreation Fogar...

 

Ken Kesey's Merry Band of Pranksters' 1960s hippie-bus Motor vehicle FurthurKen Kesey's original Furthur in 1964OverviewTypeSchool busManufacturerInternational HarvesterProduction1939 (1939)AssemblyUnited States Inside Furthur, psychedelic paintings Furthur is a 1939 International Harvester school bus purchased by author Ken Kesey in 1964 to carry his Merry Band of Pranksters cross-country, filming their counterculture adventures as they went. The bus featured prominently in Tom Wolfe's ...

UFC mixed martial arts event in 2010 UFC Fight Night: Maynard vs. DiazThe poster for UFC Fight Night: Maynard vs. DiazInformationPromotionUltimate Fighting ChampionshipDateJanuary 11, 2010VenuePatriot CenterCityFairfax, VirginiaAttendance8,078[1]Total gate$753,962[1]Event chronology UFC 108: Evans vs. Silva UFC Fight Night: Maynard vs. Diaz UFC 109: Relentless UFC Fight Night: Maynard vs. Diaz (also known as UFC Fight Night 20) was a mixed martial arts event held by the Ultima...

 

30th Army may refer to: 30th Army (People's Republic of China) 30th Army (Soviet Union) Thirtieth Army (Japan), a unit of the Imperial Japanese Army Topics referred to by the same termThis disambiguation page lists articles about military units and formations which are associated with the same title. If an internal link referred you to this page, you may wish to change the link to point directly to the intended article.