Levinson recursion

Levinson recursion or Levinson–Durbin recursion is a procedure in linear algebra to recursively calculate the solution to an equation involving a Toeplitz matrix. The algorithm runs in Θ(n2) time, which is a strong improvement over Gauss–Jordan elimination, which runs in Θ(n3).

The Levinson–Durbin algorithm was proposed first by Norman Levinson in 1947, improved by James Durbin in 1960, and subsequently improved to 4n2 and then 3n2 multiplications by W. F. Trench and S. Zohar, respectively.

Other methods to process data include Schur decomposition and Cholesky decomposition. In comparison to these, Levinson recursion (particularly split Levinson recursion) tends to be faster computationally, but more sensitive to computational inaccuracies like round-off errors.

The Bareiss algorithm for Toeplitz matrices (not to be confused with the general Bareiss algorithm) runs about as fast as Levinson recursion, but it uses O(n2) space, whereas Levinson recursion uses only O(n) space. The Bareiss algorithm, though, is numerically stable,[1][2] whereas Levinson recursion is at best only weakly stable (i.e. it exhibits numerical stability for well-conditioned linear systems).[3]

Newer algorithms, called asymptotically fast or sometimes superfast Toeplitz algorithms, can solve in Θ(n logpn) for various p (e.g. p = 2,[4][5] p = 3 [6]). Levinson recursion remains popular for several reasons; for one, it is relatively easy to understand in comparison; for another, it can be faster than a superfast algorithm for small n (usually n < 256).[7]

Derivation

Background

Matrix equations follow the form

The Levinson–Durbin algorithm may be used for any such equation, as long as M is a known Toeplitz matrix with a nonzero main diagonal. Here is a known vector, and is an unknown vector of numbers xi yet to be determined.

For the sake of this article, êi is a vector made up entirely of zeroes, except for its ith place, which holds the value one. Its length will be implicitly determined by the surrounding context. The term N refers to the width of the matrix above – M is an N×N matrix. Finally, in this article, superscripts refer to an inductive index, whereas subscripts denote indices. For example (and definition), in this article, the matrix Tn is an n×n matrix that copies the upper left n×n block from M – that is, Tnij = Mij.

Tn is also a Toeplitz matrix, meaning that it can be written as

Introductory steps

The algorithm proceeds in two steps. In the first step, two sets of vectors, called the forward and backward vectors, are established. The forward vectors are used to help get the set of backward vectors; then they can be immediately discarded. The backwards vectors are necessary for the second step, where they are used to build the solution desired.

Levinson–Durbin recursion defines the nth "forward vector", denoted , as the vector of length n which satisfies:

The nth "backward vector" is defined similarly; it is the vector of length n which satisfies:

An important simplification can occur when M is a symmetric matrix; then the two vectors are related by bni = fnn+1−i—that is, they are row-reversals of each other. This can save some extra computation in that special case.

Obtaining the backward vectors

Even if the matrix is not symmetric, then the nth forward and backward vector may be found from the vectors of length n − 1 as follows. First, the forward vector may be extended with a zero to obtain:

In going from Tn−1 to Tn, the extra column added to the matrix does not perturb the solution when a zero is used to extend the forward vector. However, the extra row added to the matrix has perturbed the solution; and it has created an unwanted error term εf which occurs in the last place. The above equation gives it the value of:

This error will be returned to shortly and eliminated from the new forward vector; but first, the backwards vector must be extended in a similar (albeit reversed) fashion. For the backwards vector,

As before, the extra column added to the matrix does not perturb this new backwards vector; but the extra row does. Here we have another unwanted error εb with value:

These two error terms can be used to form higher-order forward and backward vectors described as follows. Using the linearity of matrices, the following identity holds for all :

If α and β are chosen so that the right hand side yields ê1 or ên, then the quantity in the parentheses will fulfill the definition of the nth forward or backward vector, respectively. With those alpha and beta chosen, the vector sum in the parentheses is simple and yields the desired result.

To find these coefficients, , are such that :

and respectively , are such that :

By multiplying both previous equations by one gets the following equation:

Now, all the zeroes in the middle of the two vectors above being disregarded and collapsed, only the following equation is left:

With these solved for (by using the Cramer 2×2 matrix inverse formula), the new forward and backward vectors are:

Performing these vector summations, then, gives the nth forward and backward vectors from the prior ones. All that remains is to find the first of these vectors, and then some quick sums and multiplications give the remaining ones. The first forward and backward vectors are simply:

Using the backward vectors

The above steps give the N backward vectors for M. From there, a more arbitrary equation is:

The solution can be built in the same recursive way that the backwards vectors were built. Accordingly, must be generalized to a sequence of intermediates , such that .

The solution is then built recursively by noticing that if

Then, extending with a zero again, and defining an error constant where necessary:

We can then use the nth backward vector to eliminate the error term and replace it with the desired formula as follows:

Extending this method until n = N yields the solution .

In practice, these steps are often done concurrently with the rest of the procedure, but they form a coherent unit and deserve to be treated as their own step.

Block Levinson algorithm

If M is not strictly Toeplitz, but block Toeplitz, the Levinson recursion can be derived in much the same way by regarding the block Toeplitz matrix as a Toeplitz matrix with matrix elements (Musicus 1988). Block Toeplitz matrices arise naturally in signal processing algorithms when dealing with multiple signal streams (e.g., in MIMO systems) or cyclo-stationary signals.

See also

Notes

  1. ^ Bojanczyk et al. (1995).
  2. ^ Brent (1999).
  3. ^ Krishna & Wang (1993).
  4. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2012-03-25. Retrieved 2013-04-01.{{cite web}}: CS1 maint: archived copy as title (link)
  5. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2009-11-15. Retrieved 2009-04-28.{{cite web}}: CS1 maint: archived copy as title (link)
  6. ^ "Archived copy" (PDF). saaz.cs.gsu.edu. Archived from the original (PDF) on 18 April 2007. Retrieved 12 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  7. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2006-09-05. Retrieved 2006-08-15.{{cite web}}: CS1 maint: archived copy as title (link)

References

Defining sources

  • Levinson, N. (1947). "The Wiener RMS error criterion in filter design and prediction." J. Math. Phys., v. 25, pp. 261–278.
  • Durbin, J. (1960). "The fitting of time series models." Rev. Inst. Int. Stat., v. 28, pp. 233–243.
  • Trench, W. F. (1964). "An algorithm for the inversion of finite Toeplitz matrices." J. Soc. Indust. Appl. Math., v. 12, pp. 515–522.
  • Musicus, B. R. (1988). "Levinson and Fast Choleski Algorithms for Toeplitz and Almost Toeplitz Matrices." RLE TR No. 538, MIT. [1]
  • Delsarte, P. and Genin, Y. V. (1986). "The split Levinson algorithm." IEEE Transactions on Acoustics, Speech, and Signal Processing, v. ASSP-34(3), pp. 470–478.

Further work

Summaries

  • Bäckström, T. (2004). "2.2. Levinson–Durbin Recursion." Linear Predictive Modelling of Speech – Constraints and Line Spectrum Pair Decomposition. Doctoral thesis. Report no. 71 / Helsinki University of Technology, Laboratory of Acoustics and Audio Signal Processing. Espoo, Finland. [3]
  • Claerbout, Jon F. (1976). "Chapter 7 – Waveform Applications of Least-Squares." Fundamentals of Geophysical Data Processing. Palo Alto: Blackwell Scientific Publications. [4]
  • Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), "Section 2.8.2. Toeplitz Matrices", Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8
  • Golub, G.H., and Loan, C.F. Van (1996). "Section 4.7 : Toeplitz and related Systems" Matrix Computations, Johns Hopkins University Press

Read other articles:

Maarssen adalah sebuah bekas gemeente Belanda yang terletak di provinsi Utrecht. Pada tahun 2006 daerah ini memiliki penduduk sebesar 39.584 jiwa. Wikimedia Commons memiliki media mengenai Maarssen. Artikel bertopik geografi atau tempat Belanda ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

Lambang Peta Data dasar Région: Bretagne Département: Côtes-d'Armor Status: Commune Ketinggian: 0 – 66 m di atas permukaan laut Wilayah: 1,52 km² Penduduk: 22 362 ' Kepadatan penduduk: jiwa per km² Kode pos: 22220 Kode telepon: Pelat kendaraan bermotor: Pembagian administratif: Alamatbalai kota: Situs web resmi: [1] Politik Wali kota: Michel Sohier Hutang: € ' Pengangguran: %' Warga asing: %' Tréguier adalah suatu komune di région (provinsi) Bretagne di Prancis, ibu kota daerah Tr...

 

Al CaponeAl Capone pada tahun 1930LahirAlphonse Gabriel Capone(1899-01-17)17 Januari 1899Brooklyn, New York, Amerika SerikatMeninggal25 Januari 1947(1947-01-25) (umur 48)Palm Island, Florida, Amerika SerikatMakamMount Carmel Cemetery, Hillside, Illinois, Amerika SerikatNama lainScarface, Big Al, Big Boy, Public Enemy No. 1, SnorkyPekerjaanGangster, penyelundupan minuman keras, pemerasan, pemimpin sindikat kriminal Chicago OutfitGugatan kejahatanPenghindaran pajakHukuman kriminalDip...

Giuseppe Furino Furino nel 1972 alla Juventus Nazionalità  Italia Altezza 167 cm Peso 69 kg Calcio Ruolo Centrocampista Termine carriera 1º luglio 1984 Carriera Giovanili 19??-1965 Juventus Squadre di club1 1965-1966 Juventus0 (0)1966-1968→  Savona61 (7)1968-1969→  Palermo27 (1)1969-1984 Juventus361 (8) Nazionale 1970-1974 Italia3 (0) Palmarès  Mondiali di calcio Argento Messico 1970 1 I due numeri indicano le presenze e le reti segnate, per le sole ...

 

Ruth NeggaNegga di San Diego Comic-Con International 2016Lahir7 Januari 1982 (umur 42)Addis Ababa, EthiopiaKebangsaanIreland, EtiopiaAlmamaterTrinity College, Dublin (B.A.)PekerjaanAktrisTahun aktif2004–sekarang Ruth Negga (/ˈneɪɡə/; lahir 7 Januari 1982) adalah aktris Irlandia[1] yang pernah tampil di film Capital Letters (2004) (dirilis dengan judul Trafficked di sejumlah negara), Isolation (2005), Breakfast on Pluto (2005), Warcraft (2016) dan Loving (2016). Ia jug...

 

Marie-Madeleine Fourcade Marie-Madeleine Fourcade, lahir 8 November 1909 di Marseille dan meninggal 20 Juli 1989 di Paris, merupakan seorang pemimpin pemberontak Prancis jaringan Alliance dengan nama kode Hérisson ('Landak) selama Perang Dunia II di Prancis. Alliance merupakan salah satu jaringan perlawanan terpenting yang bertindak untuk Inggris. Fourcade menggantikan Georges Loustaunau-Lacau (nama kode Navarre)[1] sebagai pemimpin Alliance setelah penangkapannya pada 1941. Dia adal...

Currency sign ₺Turkish lira signIn UnicodeU+20BA ₺ TURKISH LIRA SIGNCurrencyCurrencyTurkish lira Category The Turkish lira sign (symbol: ₺; image: ₺) is the currency symbol used for the Turkish lira, the official currency of Turkey and Northern Cyprus. It serves as a visual identifier for the lira in written and printed documents, as well as in digital communications. The design was presented to the public on March 1, 2012. The international three-letter code (according...

 

Численность населения республики по данным Росстата составляет 4 003 016[1] чел. (2024). Татарстан занимает 8-е место по численности населения среди субъектов Российской Федерации[2]. Плотность населения — 59,00 чел./км² (2024). Городское население — 76,72[3] % (20...

 

Северный морской котик Самец Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапси...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) بطولة الأمم الخمس 1955 تفاصيل الموسم بطولة الأمم الست  النسخة 61  التاريخ بداية:8 يناير 1955  نهاية:26 ما...

 

この項目では、江蘇省蘇州市の鎮について説明しています。その他の用法については「周荘鎮 (曖昧さ回避)」をご覧ください。 中華人民共和国 江蘇省 周荘鎮 簡体字 周庄 繁体字 周莊 拼音 Zhōuzhuāng カタカナ転写 ヂョウヂュアン 国家 中華人民共和国 省 江蘇 地級市 蘇州市 県級市 崑山市 行政級別 鎮 面積 総面積 38.96 km² 人口 総人口(2022) 3 万人 経済 電話番号 025 �...

 

Canadian poet and teacher (born 1937) Lionel John Kearns (born February 16, 1937) is a writer, educator, philosopher and polyartist, known for his innovative literary forms, and his contributions to the field of digital poetics.[1]He is recognized as an early and significant poet in the history of Canadian avant-garde literature.[2] Early life and education Kearns was born in Nelson, British Columbia, Canada. His parents were Dorothy Welch and Charles Francis Kearns, WW I avia...

Королевские военно-морские силы Таиландатайск. กองทัพเรือไทย Эмблема Королевских ВМС Таиланда Страна  Таиланд Подчинение Министерство обороны Таиланда Входит в Вооружённые силы Таиланда Тип Военно-морские силы Дислокация Бангкок Участие в Вторая мировая во...

 

Cet article est une ébauche concernant une chanson, le Concours Eurovision de la chanson et le Royaume-Uni. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir I Can. I Can Blue. Chanson de Blue au Concours Eurovision de la chanson 2011 Sortie 1er mai 2011 Durée 3:01 Langue Anglais Genre pop, dance-pop Compositeur Duncan JamesLee RyanCiaron Bell, Ben Collier, Ian Hope, Liam K...

 

Music genre This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Anglican church music – news · newspapers · books · scholar · JSTOR (August 2017) (Learn how and when to remove this message) A parish church choir at All Saints' Church, Northampton; singers wear traditional cassock, surplice and ruff and stand in ...

Open cluster in the constellation Cygnus Messier 29Open cluster Messier 29 in Cygnus, conventionally taken (as looking at the object on the southern horizon). Very broad reddish nebulosity is noticeable to the west.Observation data (J2000 epoch)Right ascension20h 23m 56s[1]Declination+38° 31′ 24″[1]Distance5,240 ly (1,608 pc)[2]Apparent magnitude (V)7.1[3]Apparent dimensions (V)7.0′Physical characteristicsMa...

 

Species of bird Black-spotted barbet male and female Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Piciformes Family: Capitonidae Genus: Capito Species: C. niger Binomial name Capito niger(Statius Müller, 1776) The black-spotted barbet (Capito niger) is a species of bird in the family Capitonidae, the New World barbets. It is found in Brazil, the Guianas, and Venezuela.[...

 

  Cavallo con maniglieHelsinki 1952 Informazioni generaliLuogoTöölö Sports Hall, Helsinki Periodo19 - 21 luglio 1952 Partecipanti185 da 29 nazioni Podio Viktor Čukarin  Unione Sovietica Hrant Šahinyan  Unione Sovietica Evgenij Korol'kov  Unione Sovietica Edizione precedente e successiva Londra 1948 Melbourne 1956 Voce principale: Ginnastica ai Giochi della XV Olimpiade. Ginnastica a Helsinki 1952 Concorso a squadre   uomini   donne Attrezzi a squadre don...

Caracalla(Marco Aurelio Antonino)Imperatore romanoBusto di Caracalla nell'Altes Museum Nome originaleLucius Septimius Bassianus (alla nascita)Marcus Aurelius Antoninus Caesar (dal 195 al 198)Caesar Marcus Aurelius Antoninus Augustus (dopo l'associazione al padre)Caesar Marcus Aurelius Severus Antoninus Pius Augustus[1](dopo l'ascesa al potere imperiale)[2] Regno198 (fino al 209 con Settimio Severo; poi dal 209 al 4 febbraio 211 con Severo e Geta; dal 4 febbraio al dicembr...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Tommy Lee Goes to College – news · newspapers · books · scholar · JSTOR (January 2018)2005 American TV series or program Tommy Lee Goes to CollegeCreated byBT, Brad WymanStarringTommy Lee, Matt Ellis, & Natalie RiedmannTheme music composerBTCountr...