The Leonids (/ˈliːənɪdz/LEE-ə-nidz) are a prolific annual meteor shower associated with the cometTempel–Tuttle, and are also known for their spectacular meteor storms that occur about every 33 years.[5] The Leonids get their name from the location of their radiant in the constellationLeo: the meteors appear to radiate from that point in the sky. Their proper Greek name should be Leontids with an additional ⟨t⟩ (Λεοντίδαι, Leontídai), but the word was initially constructed as a Greek/Latinhybrid[citation needed] and it has been used since.
Earth moves through meteoroid streams left from passages of a comet. The streams consist of solid particles, known as meteoroids, normally ejected by the comet as its frozen gases evaporate under the heat of the Sun when it is near the Sun – typically closer than Jupiter's orbit. Due to the retrograde orbit of 55P/Tempel–Tuttle, the Leonids are fast moving streams which encounter the path of Earth and impact at 70 km/s (43 mi/s).[3] It is the fastest annual meteor shower.[3] Larger Leonids which are about 10 mm (0.4 in) across have a mass of 0.5 g (0.02 oz) and are known for generating bright (apparent magnitude −1.5) meteors.[6] An annual Leonid shower may deposit 12 or 13 tons of particles across the entire planet.
The meteoroids left by the comet are organized in trails in orbits similar to – though different from – that of the comet. They are differentially disturbed by the planets, in particular Jupiter,[7] and to a lesser extent by radiation pressure from the Sun – the Poynting–Robertson effect and the Yarkovsky effect.[8] These trails of meteoroids cause meteor showers when Earth encounters them. Old trails are spatially not dense and compose the meteor shower with a few meteors per minute. In the case of the Leonids, that tends to peak around 18 November, but some are spread through several days on either side and the specific peak changes every year. Conversely, young trails are spatially very dense and the cause of meteor outbursts when the Earth enters one.
The Leonids also produce meteor storms (very large outbursts) about every 33 years, during which activity exceeds 1,000 meteors per hour,[9] with some events exceeding 100,000 meteors per hour,[10] in contrast to the sporadic background (5 to 8 meteors per hour) and the shower background (several meteors per hour).
A famous depiction of the 1833 meteor storm, produced in 1889 for the Seventh-day Adventist book Bible Readings for the Home Circle.
Woodcut print depicts the shower as seen at Niagara Falls, New York. Mechanics' Magazine said this illustration was made by an editor named Pickering "who witnessed the scene."
The Leonids are famous because their meteor showers, or storms, can be among the most spectacular. Because of the storm of 1833 and the developments in scientific thought of the time (see for example the identification of Halley's Comet), the Leonids have had a major effect on the scientific study of meteors, which had previously been thought to be atmospheric phenomena. Although it has been suggested the Leonid meteor shower and storms have been noted in ancient times,[11] it was the meteor storm of November 12–13, 1833 that broke into people's modern-day awareness. One estimate of the peak rate is over one hundred thousand meteors an hour,[12] while another, done as the storm abated, estimated in excess of 240,000 meteors during the nine hours of the storm,[1] over the entire region of North America east of the Rocky Mountains.
The event was marked by several nations of Native Americans: the Cheyenne established a peace treaty[13] and the Lakota calendar was reset.[14][15] Many Native American birthdays were calculated by reference to the 1833 Leonid event.[16]Abolitionists including Harriet Tubman and Frederick Douglass as well as slave-owners took note[17][18] and others.[19] The New York Evening Post carried a series of articles on the event including reports from Canada to Jamaica,[20] it made news in several states beyond New York[21][22] and, though it appeared in North America, was talked about in Europe.[23] The journalism of the event tended to rise above the partisan debates of the time and reviewed facts as they could be sought out.[24]Abraham Lincoln commented on it years later.[25] Near Independence, Missouri, in Clay County, a refugee Mormon community watched the meteor shower on the banks of the Missouri River after having been driven from their homes by local settlers.[26]Joseph Smith, the founder and first leader of Mormonism, afterwards noted in his journal for November 1833 his belief that this event was "a litteral [sic] fulfillment of the word of God" and a harbinger of the imminent second coming of Christ.[27] Though it was noted in the midwest and eastern areas, it was also noted in Far West, Missouri.[28]
Denison Olmsted explained the event most accurately. After spending the last weeks of 1833 collecting information, he presented his findings in January 1834 to the American Journal of Science and Arts, published in January–April 1834,[29] and January 1836.[30] He noted the shower was of short duration and was not seen in Europe, and that the meteors radiated from a point in the constellation of Leo and he speculated the meteors had originated from a cloud of particles in space.[31] Accounts of the 1866 repeat of the Leonids counted hundreds per minute/a few thousand per hour in Europe.[32] The Leonids were again seen in 1867, when moonlight reduced the rates to 1,000 meteors per hour. Another strong appearance of the Leonids in 1868 reached an intensity of 1,000 meteors per hour in dark skies. It was in 1866–67 that information on Comet Tempel-Tuttle was gathered, pointing it out as the source of the meteor shower and meteor storms.[31] When the storms failed to return in 1899, it was generally thought that the dust had moved on and the storms were a thing of the past.
1900s
In 1966, a spectacular meteor storm was seen over the Americas.[33] Historical notes were gathered thus noting the Leonids back to 900 AD.[34] Radar studies showed the 1966 storm included a relatively high percentage of smaller particles while 1965's lower activity had a much higher proportion of larger particles. In 1981 Donald K. Yeomans of the Jet Propulsion Laboratory reviewed the history of meteor showers for the Leonids and the history of the dynamic orbit of Comet Tempel-Tuttle.[35] A graph[36] from it was adapted and re-published in Sky and Telescope.[37] It showed relative positions of the Earth and Tempel-Tuttle and marks where Earth encountered dense dust. This showed that the meteoroids are mostly behind and outside the path of the comet, but paths of the Earth through the cloud of particles resulting in powerful storms were very near paths of nearly no activity. But overall the 1998 Leonids were in a favorable position so interest was rising.
Leading up to the 1998 return, an airborne observing campaign was organized to mobilize modern observing techniques by Peter Jenniskens at NASA Ames Research Center.[38] In 1999, there were also efforts to observe impacts of meteoroids on the Moon, as an example of transient lunar phenomenon. A particular reason to observe the Moon is that our vantage from a location on Earth sees only meteors coming into the atmosphere relatively close to us, while impacts on the Moon would be visible from across the Moon in a single view.[39] The sodium tail of the Moon tripled just after the 1998 Leonid shower which was composed of larger meteoroids (which in the case of the Earth was witnessed as fireballs).[40] However, in 1999 the sodium tail of the Moon did not change from the Leonid impacts.
Research by Kondrat'eva, Reznikov and colleagues[41] at Kazan University had shown how meteor storms could be accurately predicted, but for some years the worldwide meteor community remained largely unaware of these results. The work of David J. Asher, Armagh Observatory and Robert H. McNaught, Siding Spring Observatory[7] and independently by Esko Lyytinen[42][43] in 1999, following on from the Kazan research, is considered by most meteor experts as the breakthrough in modern analysis of meteor storms. Whereas previously it was hazardous to guess if there would be a storm or little activity, the predictions of Asher and McNaught timed bursts in activity down to ten minutes by narrowing down the clouds of particles to individual streams from each passage of the comet, and their trajectories amended by subsequent passage near planets. However, whether a specific meteoroid trail will be primarily composed of small or large particles, and thus the relative brightness of the meteors, was not understood. But McNaught did extend the work to examine the placement of the Moon with trails and saw a large chance of a storm impacting in 1999 from a trail while there were less direct impacts from trails in 2000 and 2001 (successive contact with trails through 2006 showed no hits).[40]
2000s
Viewing campaigns resulted in spectacular footage from the 1999, 2001, and 2002 storms which produced up to 3,000 Leonid meteors per hour.[38] Predictions for the Moon's Leonid impacts also noted that in 2000 the side of the Moon facing the stream was away from the Earth, but that impacts should be in number enough to raise a cloud of particles kicked off the Moon which could cause a detectable increase in the sodium tail of the Moon.[40] Research using the explanation of meteor trails/streams have explained the storms of the past. The 1833 storm was not due to the recent passage of the comet, but from a direct impact with the previous 1800 dust trail.[44] The meteoroids from the 1733 passage of Comet Tempel-Tuttle resulted in the 1866 storm[45] and the 1966 storm was from the 1899 passage of the comet.[46] The double spikes in Leonid activity in 2001 and in 2002 were due to the passage of the comet's dust ejected in 1767 and 1866.[47] This ground breaking work was soon applied to other meteor showers – for example the 2004 June Bootids. Peter Jenniskens has published predictions for the next 50 years.[48] However, a close encounter with Jupiter is expected to perturb the comet's path, and many streams, making storms of historic magnitude unlikely for many decades. Recent work tries to take into account the roles of differences in parent bodies and the specifics of their orbits, ejection velocities off the solid mass of the core of a comet, radiation pressure from the Sun, the Poynting–Robertson effect, and the Yarkovsky effect on the particles of different sizes and rates of rotation to explain differences between meteor showers in terms of being predominantly fireballs or small meteors.[8]
^Mohammed Omar Suleyman (2009). "The Leonid meteor shower and the history of the Semites (Arabs and Jews)". Journal of the International Meteor Organization. 37 (3): 84–91. Bibcode:2009JIMO...37...84S.
^"Counting by Winters". Lakota Winter Counts Online Exhibit by the Smithsonian Institution National Museum of Natural History. Smithsonian Institution. Archived from the original on 23 April 2014. Retrieved 24 December 2009.
^"The Night the Stars Fell; My Search for Amanda Young". Freedmen of the Frontier – African American Historical and Genealogical Resource Page of the city of Ft. Smith Arkansas. Archived from the original on 30 November 2020. Retrieved 24 December 2009.
^Bell, Madison Smartt (24 June 2007). "The Fugitive". New York Times. Archived from the original on 2 September 2018. Retrieved 24 December 2009.
^* "Wednesday, November 13". The Evening Post. New York, New York. 13 November 1833. p. 2. Archived from the original on 13 May 2022. Retrieved 27 October 2015.
"Thursday, November 14". The Evening Post. New York, New York. 14 November 1833. p. 2. Archived from the original on 4 March 2016. Retrieved 27 October 2015.
"Friday, November 15". The Evening Post. New York, New York. 15 November 1833. p. 2. Archived from the original on 13 May 2022. Retrieved 27 October 2015.
"The late celestial phenomena…". The Evening Post. New York, New York. 22 November 1833. p. 2. Archived from the original on 4 March 2016. Retrieved 27 October 2015.
"An extract of a letter…". The Evening Post. New York, New York. 23 November 1833. p. 2. Archived from the original on 13 May 2022. Retrieved 27 October 2015.
"New Orleans, Nov 14…". The Evening Post. New York, New York. 28 November 1833. p. 2. Archived from the original on 13 May 2022. Retrieved 27 October 2015.
"A Halifax article…". The Evening Post. New York, New York. 29 November 1833. p. 2. Archived from the original on 4 March 2016. Retrieved 27 October 2015.
"From Jamaica…". The Evening Post. (New York, New York. 27 December 1833. p. 2. Archived from the original on 4 March 2016. Retrieved 27 October 2015.
^* "Meteoric Phenomenon". The Adams Sentinel. Gettysburg, Pennsylvania. 18 November 1833. p. 3. Archived from the original on 4 March 2016. Retrieved 27 October 2015.
"Remarkable Phenomenon". Huron Reflector. Norwalk, Ohio. 19 November 1833. p. 2. Archived from the original on 6 March 2016. Retrieved 27 October 2015.
"Falling stars". Newbern Sentinel. New Bern, North Carolina. 6 December 1833. p. 2. Archived from the original on 4 March 2016. Retrieved 27 October 2015.
^Mary L. Kwas (1999). "The Spectacular 1833 Leonid Meteor Storm: The View from Arkansas". The Arkansas Historical Quarterly. 58 (3): 314–324. doi:10.2307/40026232. JSTOR40026232.
^"At Halifax, Nova Scotia…". The Times. London, England. 11 December 1833. p. 5. Archived from the original on 4 March 2016. Retrieved 27 October 2015.
^Mark Littmann (September 2008). "American Newspapers and the Great Meteor Storm of 1833: A Case Study in Science Journalism". Journalism and Communication Monographs. 10 (3): 249–284. doi:10.1177/152263790801000302. S2CID144266410.
^Erwin F. Lange (August 1968). "Fireballs, meteorites, and meteor showers". The Ore Bin. 30 (8). Oregon. Dept. of Geology and Mineral Industries: 145–150. Archived from the original on 4 March 2016. Retrieved 27 October 2015.
^Kondrat'eva, E.D.; Reznikov, E.A. (1985), "Comet Tempel-Tuttle and the Leonid meteor swarm", Solar System Research, 19: 96–101, Bibcode:1985AVest..19..144K
^Jenniskens, P. (2006). Meteor Showers and their Parent Comets. Cambridge, UK: Cambridge University Press. ISBN978-0-521-85349-1.
^ abcdeMaslov, Mikhail (2007), "Leonid predictions for the period 2001–2100", WGN, Journal of the International Meteor Organization, 35 (1): 5–12, Bibcode:2007JIMO...35....5M; also see "Leonids 1901–2100". M. Maslov webpage. Archived from the original on 1 October 2016. Retrieved 28 September 2016.
National flag Flag Date Use Description 1902-present Flag of Cuba Five horizontal stripes of turquoise blue alternate with white with the red equilateral triangle based on the hoist-side bearing the white five-pointed star in the center.[1] Governmental flags Flag Date Use Description 1959-present Flag of the president of Cuba 1959-present Flag of the president of Cuba (Commander-in-Chief) 1929-1959 Flag of the president of Cuba 1909-1929 Flag of the president of Cuba 1909-1929 Flag ...
N,N-Diisopropylaminoethanol Names Preferred IUPAC name 2-[Di(propan-2-yl)amino]ethan-1-ol Other names 2-[Di(propan-2-yl)amino]ethanol2-(Diisopropylamino)ethanol Identifiers CAS Number 96-80-0 Y 3D model (JSmol) Interactive image Beilstein Reference 1697955 ChEMBL ChEMBL122184 Y ChemSpider 7039 Y ECHA InfoCard 100.002.307 EC Number 202-536-2 MeSH 2-diisopropylaminoethanol PubChem CID 7313 RTECS number KK5950000 UNII DK7FND4TJZ Y UN number 2922 CompTox Dashboard (EPA) DTXSI...
See also: 2011 European Track Championships (under-23 & junior) 2011 UEC European Track ChampionshipsVenueApeldoorn, NetherlandsDate(s) (2011-10-21 - 2011-10-23)21–23 October 2011VelodromeOmnisport ApeldoornEvents13← 20102012 → Omnisport Apeldoorn The 2011 European Track Championships was the second edition of the elite European Track Championships in track cycling and took place at the Omnisport Arena in Apeldoorn, Netherlands, between 21 and 23 October.[...
Mitch McConnell, chef du groupe républicain au Sénat. Le groupe républicain (en anglais : Senate Republican Conference) au Sénat des États-Unis regroupe les élus à la chambre haute du Congrès affiliés au Parti républicain. Il est actuellement composé de 50 sénateurs sur les 100 que compte l'assemblée. Le groupe est présidé par Mitch McConnell depuis 2007. Direction À l'ouverture de la 117e législature du Congrès des États-Unis le 3 janvier 2021, le groupe est diri...
Benzodiazepine medication Not to be confused with nitrazepam or nitemazepam. NimetazepamClinical dataTrade namesEriminAHFS/Drugs.comInternational Drug NamesPregnancycategory X Routes ofadministrationBy mouthATC codeN05CD15 (WHO) Legal statusLegal status AU: S4 (Prescription only) BR: Class B1 (Psychoactive drugs)[1] CA: Schedule IV DE: Anlage III (Special prescription form required) US: Schedule IV UN: Psychotropic Schedule IV Pharmacokinet...
Pour les articles homonymes, voir Borghi (homonymie). Cet article est une ébauche concernant une localité italienne et la Lombardie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Varano Borghi Armoiries Drapeau Noms Nom latin (origine) Varius + -anus Administration Pays Italie Région Lombardie Province Varèse Code postal 21020 Code ISTAT 012132 Code cadastral L671 Préfixe tel. 0332 Démographi...
1985 studio album by Baltimora Living in the BackgroundItalian and German coverStudio album by BaltimoraReleasedApril 1985Genre Italo disco new wave[1] Length34:01LabelEMIProducerMaurizio BassiBaltimora chronology Living in the Background(1985) Survivor in Love(1987) Singles from Living in the Background Tarzan BoyReleased: April 1985 Woody BoogieReleased: 1985 Living in the BackgroundReleased: 1985 Juke Box BoyReleased: 1986 US and Canadian cover UK cover Professional ratingsRevi...
Town in Vermont, United StatesBradford, VermontTownMain StreetLocated in Orange County, VermontBradford, VermontCoordinates: 43°59′41″N 72°7′58″W / 43.99472°N 72.13278°W / 43.99472; -72.13278Country United StatesState VermontCountyOrangeChartered1770CommunitiesBradfordBradford CenterArea • Total29.9 sq mi (77.4 km2) • Land29.8 sq mi (77.2 km2) • Water0.1 sq mi (0.2 k...
Japanese commercial CubeSat WE WISHA collection of CubeSats at Tsukuba Space Center prior to their launch in 2012, with WE WISH visible on the far leftMission typeTechnology demonstrationAmateur radioEarth observationOperatorMeisei Amateur Radio ClubCOSPAR ID2012-038F (1998-067CS)SATCAT no.38856Mission duration158 days (achieved)100 days (planned) Spacecraft propertiesSpacecraft typeCubeSatBusCubeSatManufacturerMeisei ElectricMeisei Amateur Radio ClubLaunch mass1 kg (2.2 lb)Dimensio...
Universitas BarcelonaUniversitat de BarcelonaMotoLibertas perfundet omnia luce (Freedom bathes everything with light)JenisPublikDidirikan3 November 1450; 573 tahun lalu (1450-11-03)RektorJoan GuàrdiaStaf administrasi5.715Jumlah mahasiswa62,995LokasiBarcelona, Catalunya, SpanyolKampus4 dengan 16 fakultas dan 9 pusat afiliasiBahasaKatalan[1]WarnaBiru langit[2][3]AfiliasiGrup CoimbraLERUAsosiasi Universitas EropaPersatuan Universitas MediteraniaJaringan Universitas ...
Mosque in London, England This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: London Central Mosque – news · newspapers · books · scholar · JSTOR (February 2008) (Learn how and when to remove this message) London Central MosqueRegent's Park MosqueOutside view of Mosque in the Daylight.ReligionAffiliationSunni Is...
Local government head in South Korea Governor of Jeonbuk State전북특별자치도지사Seal of Jeonbuk StateIncumbentKim Kwan-youngsince 1 July 2022Term lengthFour yearsInaugural holderChung Il-saFormation4 April 1946; 78 years ago (1946-04-04) The Governor of Jeonbuk State (Korean: 전북특별자치도지사; Hanja: 全北特別自治道知事) is the head of the local government of Jeonbuk State who is elected to a four-year term. List of gove...
لمعانٍ أخرى، طالع جورج دوغلاس (توضيح). جورج دوغلاس معلومات شخصية الميلاد 7 أغسطس 1903(1903-08-07)ماكون، الولايات المتحدة الوفاة 11 يونيو 1983 (79 سنة)سان دييغو مواطنة الولايات المتحدة الحياة العملية المهنة ممثل اللغة الأم الإنجليزية اللغات الإنجليزية سنوات النشاط 1938-1...
Mappa del mare Adriatico Con questione adriatica si indica la contesa per il dominio delle terre che si affacciano sul mare Adriatico orientale da Monfalcone fino alle Bocche di Cattaro e che corrispondono alle regioni storiche della Venezia Giulia, dell'Istria, del Quarnaro e della Dalmazia. Tali terre, a partire dalla Primavera dei Popoli del 1848, furono contese tra popolazioni slave e italiane. Questa lotta s'inserisce all'interno di un fenomeno più ampio, che fu legato all'affermarsi de...
1999 single by Tori AmosGlory of the 80'sStandard artwork for international releasesSingle by Tori Amosfrom the album To Venus and Back ReleasedOctober 11, 1999 [Aus][1]November 1, 1999 [UK]November 1, 1999 [EU]RecordedApril 1999Genre Alternative rock electronic Length4:01LabelAtlanticSongwriter(s)Tori AmosProducer(s)Tori AmosTori Amos singles chronology 1000 Oceans (1999) Glory of the 80's (1999) Concertina (2000) Glory of the 80's is a song by American singer-songwriter Tori Amos. ...
Traditional ideology and code of conduct of knights For other uses, see Chivalry (disambiguation). Konrad von Limpurg as a knight being armed by his lady in the Codex Manesse (early 14th century) Chivalry, or the chivalric language, is an informal and varying code of conduct developed in Europe between 1170 and 1220. It is associated with the medieval Christian institution of knighthood, with knights being members of various chivalric orders,[1][2] and with knights' and gentle...
Pour les articles homonymes, voir Lindfors. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (janvier 2019). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique...