Least mean squares filter

Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired filter by finding the filter coefficients that relate to producing the least mean square of the error signal (difference between the desired and the actual signal). It is a stochastic gradient descent method in that the filter is only adapted based on the error at the current time. It was invented in 1960 by Stanford University professor Bernard Widrow and his first Ph.D. student, Ted Hoff, based on their research in single-layer neural networks (ADALINE). Specifically, they used gradient descent to train ADALINE to recognize patterns, and called the algorithm "delta rule". They then applied the rule to filters, resulting in the LMS algorithm.

Problem formulation

The picture shows the various parts of the filter. is the input signal, which is then transformed by an unknown filter that we wish to match using . The output from the unknown filter is , which is then interfered with a noise signal , producing . Then the error signal is computed, and it is fed back to the adaptive filter, to adjust its parameters in order to minimize the mean square of the error signal .

LMS filter

Relationship to the Wiener filter

The realization of the causal Wiener filter looks a lot like the solution to the least squares estimate, except in the signal processing domain. The least squares solution for input matrix and output vector is

The FIR least mean squares filter is related to the Wiener filter, but minimizing the error criterion of the former does not rely on cross-correlations or auto-correlations. Its solution converges to the Wiener filter solution. Most linear adaptive filtering problems can be formulated using the block diagram above. That is, an unknown system is to be identified and the adaptive filter attempts to adapt the filter to make it as close as possible to , while using only observable signals , and ; but , and are not directly observable. Its solution is closely related to the Wiener filter.

Definition of symbols

is the number of the current input sample
is the number of filter taps
(Hermitian transpose or conjugate transpose)
estimated filter; interpret as the estimation of the filter coefficients after n samples

Idea

The basic idea behind LMS filter is to approach the optimum filter weights , by updating the filter weights in a manner to converge to the optimum filter weight. This is based on the gradient descent algorithm. The algorithm starts by assuming small weights (zero in most cases) and, at each step, by finding the gradient of the mean square error, the weights are updated. That is, if the MSE-gradient is positive, it implies the error would keep increasing positively if the same weight is used for further iterations, which means we need to reduce the weights. In the same way, if the gradient is negative, we need to increase the weights. The weight update equation is

where represents the mean-square error and is a convergence coefficient.

The negative sign shows that we go down the slope of the error, to find the filter weights, , which minimize the error.

The mean-square error as a function of filter weights is a quadratic function which means it has only one extremum, that minimizes the mean-square error, which is the optimal weight. The LMS thus, approaches towards this optimal weights by ascending/descending down the mean-square-error vs filter weight curve.

Derivation

The idea behind LMS filters is to use steepest descent to find filter weights which minimize a cost function. We start by defining the cost function as

where is the error at the current sample n and denotes the expected value.

This cost function () is the mean square error, and it is minimized by the LMS. This is where the LMS gets its name. Applying steepest descent means to take the partial derivatives with respect to the individual entries of the filter coefficient (weight) vector

where is the gradient operator

Now, is a vector which points towards the steepest ascent of the cost function. To find the minimum of the cost function we need to take a step in the opposite direction of . To express that in mathematical terms

where is the step size (adaptation constant). That means we have found a sequential update algorithm which minimizes the cost function. Unfortunately, this algorithm is not realizable until we know .

Generally, the expectation above is not computed. Instead, to run the LMS in an online (updating after each new sample is received) environment, we use an instantaneous estimate of that expectation. See below.

Simplifications

For most systems the expectation function must be approximated. This can be done with the following unbiased estimator

where indicates the number of samples we use for that estimate. The simplest case is

For that simple case the update algorithm follows as

Indeed, this constitutes the update algorithm for the LMS filter.

LMS algorithm summary

The LMS algorithm for a th order filter can be summarized as

Parameters: filter order
step size
Initialisation:
Computation: For

Convergence and stability in the mean

As the LMS algorithm does not use the exact values of the expectations, the weights would never reach the optimal weights in the absolute sense, but a convergence is possible in mean. That is, even though the weights may change by small amounts, it changes about the optimal weights. However, if the variance with which the weights change, is large, convergence in mean would be misleading. This problem may occur, if the value of step-size is not chosen properly.

If is chosen to be large, the amount with which the weights change depends heavily on the gradient estimate, and so the weights may change by a large value so that gradient which was negative at the first instant may now become positive. And at the second instant, the weight may change in the opposite direction by a large amount because of the negative gradient and would thus keep oscillating with a large variance about the optimal weights. On the other hand, if is chosen to be too small, time to converge to the optimal weights will be too large.

Thus, an upper bound on is needed which is given as ,

where is the greatest eigenvalue of the autocorrelation matrix . If this condition is not fulfilled, the algorithm becomes unstable and diverges.

Maximum convergence speed is achieved when

where is the smallest eigenvalue of . Given that is less than or equal to this optimum, the convergence speed is determined by , with a larger value yielding faster convergence. This means that faster convergence can be achieved when is close to , that is, the maximum achievable convergence speed depends on the eigenvalue spread of .

A white noise signal has autocorrelation matrix where is the variance of the signal. In this case all eigenvalues are equal, and the eigenvalue spread is the minimum over all possible matrices. The common interpretation of this result is therefore that the LMS converges quickly for white input signals, and slowly for colored input signals, such as processes with low-pass or high-pass characteristics.

It is important to note that the above upperbound on only enforces stability in the mean, but the coefficients of can still grow infinitely large, i.e. divergence of the coefficients is still possible. A more practical bound is

where denotes the trace of . This bound guarantees that the coefficients of do not diverge (in practice, the value of should not be chosen close to this upper bound, since it is somewhat optimistic due to approximations and assumptions made in the derivation of the bound).

Normalized least mean squares filter (NLMS)

The main drawback of the "pure" LMS algorithm is that it is sensitive to the scaling of its input . This makes it very hard (if not impossible) to choose a learning rate that guarantees stability of the algorithm (Haykin 2002). The Normalised least mean squares filter (NLMS) is a variant of the LMS algorithm that solves this problem by normalising with the power of the input. The NLMS algorithm can be summarised as:

Parameters: filter order
step size
Initialization:
Computation: For

Optimal learning rate

It can be shown that if there is no interference (), then the optimal learning rate for the NLMS algorithm is

and is independent of the input and the real (unknown) impulse response . In the general case with interference (), the optimal learning rate is

The results above assume that the signals and are uncorrelated to each other, which is generally the case in practice.

Proof

Let the filter misalignment be defined as , we can derive the expected misalignment for the next sample as:

Let and

Assuming independence, we have:

The optimal learning rate is found at , which leads to:

See also

References

  • Monson H. Hayes: Statistical Digital Signal Processing and Modeling, Wiley, 1996, ISBN 0-471-59431-8
  • Simon Haykin: Adaptive Filter Theory, Prentice Hall, 2002, ISBN 0-13-048434-2
  • Simon S. Haykin, Bernard Widrow (Editor): Least-Mean-Square Adaptive Filters, Wiley, 2003, ISBN 0-471-21570-8
  • Bernard Widrow, Samuel D. Stearns: Adaptive Signal Processing, Prentice Hall, 1985, ISBN 0-13-004029-0
  • Weifeng Liu, Jose Principe and Simon Haykin: Kernel Adaptive Filtering: A Comprehensive Introduction, John Wiley, 2010, ISBN 0-470-44753-2
  • Paulo S.R. Diniz: Adaptive Filtering: Algorithms and Practical Implementation, Kluwer Academic Publishers, 1997, ISBN 0-7923-9912-9

Read other articles:

Cet article est une ébauche concernant la sécurité, la Seine-Saint-Denis et la prison. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Maison d'arrêt de Villepinte Localisation Pays France Région Île-de-France Département Seine-Saint-Denis Localité Villepinte Coordonnées 48° 57′ 54″ nord, 2° 33′ 11″ est Géolocalisation sur la carte : Seine-Saint-Denis Maison...

 

Régions et peuples solidaires Logotype officiel. Présentation Président François Alfonsi Fondation 12 novembre 1994 Siège Nantes (Loire-Atlantique) Positionnement Centre[1] à gauche[1] Idéologie Régionalisme[1]Fédéralisme[2]Europhilie[2] Affiliation européenne Alliance libre européenne Couleurs Vert, noir, jaune et rouge Site web federation-rps.org Représentation Sénateurs 1  /  348 Députés 4  /  577 Conseillers régionaux 29  /  762 Députés eu...

 

У этого термина существуют и другие значения, см. Ислам (значения). ИсламСтолпы ислама Свидетельство веры Молитва Пост Милостыня Паломничество Столпы веры Аллах (Единобожие) Ангелы Пророки Писания Судный день Предопределение История и представители Мухаммед Халифы С...

Halaman ini berisi artikel tentang organ di dalam mulut. Untuk tumbuhan dengan nama sama dari subkeluarga Prunoidae, lihat Badam. Tonsil di dalam rongga mulut. Amandel (Belanda: keelamandel, amandelcode: nl is deprecated ) atau tonsil (Inggris: tonsil) adalah salah satu organ limfatik yang berada pada setiap sisi belakang tenggorokan. Organ ini juga merupakan salah satu bagian pembentuk sistem kekebalan dan dapat memproduksi antibodi untuk melawan berbagai macam kuman atau yang menyerang ...

 

Kurt Adolf MautzBiographieNaissance 1er juin 1911Montigny-lès-MetzDécès Novembre 2000 (à 89 ans)WiesbadenNationalité allemandeActivités Écrivain, poètemodifier - modifier le code - modifier Wikidata Kurt Mautz (1er juin 1911 - novembre 2000) est un écrivain allemand. Il est connu pour ses travaux sur Stifter. Biographie Kurt Adolf Mautz naît à Montigny-lès-Metz le 1er juin 1911. Il étudie d'abord la germanistique, la philosophie et l'histoire de 1930 à 1933 à Francfort-sur...

 

American football player (born 1963) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (September 2014) (Learn how and when to remove this message) Reggie DupardNo. 21, 25Dupard playing for the Patriots, circa 1987Date of birth (1963-10-30) October 30, 1963 (age 60)Place of birthNew Orleans, Louisi...

Questa voce o sezione sull'argomento gruppi musicali statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. The CrampsLux Interior e Poison Ivy dal vivo nel 1982 Paese d'origine Stati Uniti GenerePsychobilly[1]Rockabilly[1]Post-punk[1]Rock alternativo[1]Punk ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2017) فيرست توش غيمز (بالإنجليزية: First Touch Games)‏ هي شركة مطورة وناشرة لألعاب الفيديو، تأسست عام 2014، تركز الشركة على صناعة ألعاب للهواتف المحمولة، لكنها أيضًا طوّرت �...

 

Law school in San Diego, California, U.S. Cal Western redirects here. For the other university descended from Cal Western University, see Alliant International University. California Western School of LawEstablished1924[1]School typePrivate law schoolDeanSean Megan Scott[2]LocationSan Diego, California, United States32°43′21″N 117°9′42″W / 32.72250°N 117.16167°W / 32.72250; -117.16167Enrollment827[3]Faculty71 (25 tenured)[4]U...

English cricketer & rugby union player Maurice TurnbullPersonal informationFull nameMaurice Joseph Lawson TurnbullBorn16 March 1906Cardiff, WalesDied5 August 1944(1944-08-05) (aged 38)Montchamp, German-occupied FranceBattingRight-handedBowlingRight-arm offbreakInternational information National sideEnglandTest debut10 January 1930 v New ZealandLast Test27 June 1936 v India Career statistics Competition Test First-class Matches 9 388 Runs scored 224 17,544 Bat...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Осн�...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أبريل 2019) نادي طبرجل السعودي الاسم المختصر طبرجل الألوان البني و الأصفر تأسس عام 2014 م الملعب طبرجل  السعودية البل...

 

1978 book by Larry Kramer This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Faggots novel – news · newspapers · books · scholar · JSTOR (December 2008) (Learn how and when to remove this message) Faggots Cover of the first editionAuthorLarry KramerLanguageEnglishGenreGay literaturePublished1978, Random Ho...

 

New York-based academic publisher Berghahn redirects here. For German politician, see Jürgen Berghahn. Berghahn BooksFounded1994FounderMarion BerghahnCountry of originUnited StatesHeadquarters locationNew York CityDistributionTurpin Distribution (United Kingdom, Republic of Ireland, South Africa, India)Ingram Academic (United States, Australia, New Zealand)[1]Publication typesBooks, Academic journalsOfficial websitewww.berghahnbooks.com Berghahn Books is a New York and Oxford–based...

British entrepreneur Theo PaphitisTheo Paphitis in 2012Born (1959-09-24) 24 September 1959 (age 64)Limassol, British CyprusNationalityCypriotCitizenshipCypriotBritishOccupationsRetail MagnateEntrepreneurKnown forDragon on Dragons' DenFormer Chairman of Millwall Football ClubSpouse Debbie Stocker ​(m. 1978)​Children5Chancellor of Solent UniversityIncumbentAssumed office 11 October 2018Preceded byAlan West Websitewww.theopaphitis.com Theodoros Paphitis...

 

12th Abbasid caliph (r. 862–866) For other people named al-Musta'in, see al-Musta'in (disambiguation). al-Musta'in bi-llahالمستعين باللهCaliph Commander of the FaithfulGold dinar of al-Musta'in12th Caliph of the Abbasid CaliphateReign8 June 862 — 17 October 866Predecessoral-MuntasirSuccessoral-Mu'tazzBornc. 836Samarra, Abbasid CaliphateDied17 October 866 (aged 29–30)Baghdad, Abbasid CaliphateIssueal-Abbas[1]NamesAbū al-ʿAbbās Aḥmad ibn Muḥammad ibn Muḥammad...

 

Gimnasium Gangneung LokasiLokasiGangneung, Korea SelatanKoordinat37°46′26″N 128°53′33″E / 37.7737639°N 128.892519°E / 37.7737639; 128.892519KonstruksiDibuka1998; 26 tahun lalu (1998)Data teknisKapasitas3,500 (Mode Olimpiade)Sunting kotak info • L • BBantuan penggunaan templat ini Gimnasium Gangneung (강릉실내종합체육관) adalah arena dalam ruangan serbaguna yang terletak di kota pesisir Gangneung, Korea Selatan. Dibuka pada tahun ...

Japanese manga artist Paru Itagaki板垣 巴留Born (1993-09-09) September 9, 1993 (age 30)[1][2]Tokyo, JapanArea(s)Manga artistNotable worksBeastarsSandaAwardsJapan Media Arts Festival AwardManga TaishōTezuka Osamu Cultural PrizeKodansha Manga Award Paru Itagaki (板垣 巴留, Itagaki Paru, born September 9, 1993) is a Japanese manga artist. She is best known as the creator of the manga series Beastars, for which she has won numerous awards. She is the daughter of mang...

 

  لمعانٍ أخرى، طالع لطف أباد (توضيح). لطف أباد لطف آباد  - city -  تقسيم إداري البلد  إيران[1] المحافظة خراسان رضوي المقاطعة مقاطعة درغز الناحية لطف أباد إحداثيات 37°31′05″N 59°20′27″E / 37.51806°N 59.34083°E / 37.51806; 59.34083 السكان التعداد السكاني 1897 نسمة (إحصاء ...