University of Wisconsin-Madison (BA), Carnegie-Mellon University (PhD)
Occupation
Chemist
Organization(s)
Argonne National Laboratory, Joint Center for Energy Storage Research, the Center for Electrochemical Energy Science, American Association for the Advancement of Science
Known for
Gaussian-n series, lithium-air batteries
Awards
University of Chicago Distinguished Performance Award
Larry A. Curtiss is an American chemist and researcher. He was born in Madison. WI. in 1947. He is a distinguished fellow and group leader of the Molecular Materials Group in the Materials Science Division at the U.S. Department of Energy's (DOE) Argonne National Laboratory.[1] In addition, Curtiss is a senior investigator in the Joint Center for Energy Storage Research (JCESR), a DOE Energy Storage Hub, and was the deputy director of the Center for Electrochemical Energy Science, a DOE Energy Frontier Research Center.[1]
Curtiss is a specialist in developing quantum chemical methods for accurate energy calculations and applying these methods to energy- and material-related problems, including those related to catalysis, batteries, and carbon materials. His work has been cited over 67,000 times.[2]
Curtiss joined Argonne in 1976 as a research associate in Argonne's former Chemical Technology Division, where he rose through the ranks to become senior scientist in 1988.[4] In 1998, Curtiss was appointed to his current position as senior scientist and group leader of the Molecular Materials Group within Argonne's Materials Science Division.[4] From 2006 until 2009, he was also an acting group leader at the Center for Nanoscale Materials, and from 2004 until 2018, Curtiss was a senior fellow of the University of Chicago/Argonne Computation Institute.[4] In 2000, Curtiss was named an Argonne Distinguished Fellow.[3]
Research
Developing and applying computational chemistry methods
Curtiss helped develop the Gaussian-n series of quantum chemical methods for accurate energy calculations (G1, G2, G3, and G4 theories).[6][7][8][9] These methods are for calculating the thermochemical properties of molecules and ions.
Modeling lithium-ion batteries and beyond-lithium-ion batteries
Curtiss is also involved in developing so-called "beyond-lithium-ion" batteries, such as lithium-sulfur and lithium–air batteries. He helped create a Li-O2 battery that runs on lithium superoxide.[10][11] Curtiss and researchers from Argonne and the University of Illinois also designed a lithium-air battery that works in a natural air environment for over 700 charge and discharge cycles, surpassing previous technology.[12][13]
Honors and awards
Named a Distinguished Fellow of Argonne National Laboratory, 2000[3]
Elected a Fellow of the American Association for the Advancement of Science, 1997[2]
Select Recent Publications
Accurate quantum chemical energies for 133000 organic molecules, B. Narayanan, P.C. Redfern, R.S. Assary, L.A. Curtiss, Chem. Sci., 10, 7449-7455 (2019). doi:10.1039/C9SC02834J[14]
Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries, Q. Pang, A. Shyamsunder, B. Narayanan, C. Y. Kwok, L. A. Curtiss, L. F. Nazar, Nature Energy (2018) doi:10.1038/s41560-018-0214-0[15]
Lithium-Oxygen Batteries with Long Cycle Life in a Realistic Air Atmosphere, M. Asadi, B. Sayahpour, P. Abbasi, A. T. Ngo, K. Karis, J. R. Jokisaari, C. Liu, B. Narayanan, M. Gerard1, P. Yasaei, X. Hu, A. Mukherjee, K. C. Lau, R. S. Assary, F. Khalili-Araghi, R. F. Klie, L. A. Curtiss, Amin Salehi-Khojin1, Nature, 555, 502 (2018). DOI:10.1038/nature25984[16]
Perspective: Size selected clusters for catalysis and electrochemistry, A. Halder, L. A. Curtiss, A. Fortunelli, S. Vajda, J. Chem. Phys. 148, 110901 (2018).DOI: 10.1063/1.5020301[17]
The Role of Nanotechnology in the Development of Battery Materials for Electric Vehicles, J. Lu, Z. Chen, Z. Ma, F. Pan, L. A. Curtiss, K. Amine, Nature Nanotechnology 11, 1031–1038 (2016). DOI:10.1038/nnano.2016.207[18]
A Lithium-Oxygen Battery Based on Lithium Superoxide, J. Lu, Y. J. Lee, X. Luo, K. C. Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. G. Wen, D. Zhai, Z. Chen, D. J. Miller, Y. S. Jeong, J.-B. Park, Z. Z. Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L. A. Curtiss, K. Amine, Nature 2016, 529, 377. DOI:10.1038/nature16484[19]
Transition metal dichalcogenides as highly active catalysts for carbon dioxide reduction, Mohammad Asadi, Kibum Kim, Cong Liu, Aditya Venkata Addepalli, Pedram Abbasi, Poya Yasaei, Patrick Phillips, Amirhossein Behranginia, José M. Cerrato, Richard Haasch, Peter Zapol, Bijandra Kumar, Robert F. Klie, Jeremiah Abiade, Larry A. Curtiss, Amin Salehi-Khojin, Science, 353, 467-470 (2016). DOI: 10.1126/science.aaf4767[20]
Patents
Lithium air batteries having ether-based electrolytes, (2016).[21]
^ abUS 9553316, Lu, Jun; Amine, Khalil & Curtiss, Larry A et al., "Lithium-oxygen batteries incorporating lithium superoxide", published 2017-01-24, assigned to Uchicago Argonne LLC
^US 9478837, Amine, Khalil; Curtiss, Larry A. & Lu, Jun et al., "Lithium air batteries having ether-based electrolytes", published 2016-10-25, assigned to Uchicago Argonne LLC
^US 10385032, Vajda, Stefan; Halder, Avik & Curtiss, Larry A., "Selective oxidation of propane to propylene oxide", published 2019-08-20, assigned to Uchicago Argonne LLC