La Géométrie

La Géométrie (French pronunciation: [la ʒeɔmetʁi]) was published in 1637 as an appendix to Discours de la méthode (Discourse on the Method), written by René Descartes. In the Discourse, Descartes presents his method for obtaining clarity on any subject. La Géométrie and two other appendices, also by Descartes, La Dioptrique (Optics) and Les Météores (Meteorology), were published with the Discourse to give examples of the kinds of successes he had achieved following his method[1] (as well as, perhaps, considering the contemporary European social climate of intellectual competitiveness, to show off a bit to a wider audience).

La Géométrie

The work was the first to propose the idea of uniting algebra and geometry into a single subject[2] and invented an algebraic geometry called analytic geometry, which involves reducing geometry to a form of arithmetic and algebra and translating geometric shapes into algebraic equations. For its time this was ground-breaking. It also contributed to the mathematical ideas of Leibniz and Newton and was thus important in the development of calculus.

The text

This appendix is divided into three "books".[3]

Book I is titled Problems Which Can Be Constructed by Means of Circles and Straight Lines Only. In this book he introduces algebraic notation that is still in use today. The letters at the end of the alphabet, viz., x, y, z, etc. are to denote unknown variables, while those at the start of the alphabet, a, b, c, etc. denote constants. He introduces modern exponential notation for powers (except for squares, where he kept the older tradition of writing repeated letters, such as, aa). He also breaks with the Greek tradition of associating powers with geometric referents, a2 with an area, a3 with a volume and so on, and treats them all as possible lengths of line segments. These notational devices permit him to describe an association of numbers to lengths of line segments that could be constructed with straightedge and compass. The bulk of the remainder of this book is occupied by Descartes's solution to "the locus problems of Pappus."[4] According to Pappus, given three or four lines in a plane, the problem is to find the locus of a point that moves so that the product of the distances from two of the fixed lines (along specified directions) is proportional to the square of the distance to the third line (in the three line case) or proportional to the product of the distances to the other two lines (in the four line case). In solving these problems and their generalizations, Descartes takes two line segments as unknown and designates them x and y. Known line segments are designated a, b, c, etc. The germinal idea of a Cartesian coordinate system can be traced back to this work.

In the second book, called On the Nature of Curved Lines, Descartes described two kinds of curves, called by him geometrical and mechanical. Geometrical curves are those which are now described by algebraic equations in two variables, however, Descartes described them kinematically and an essential feature was that all of their points could be obtained by construction from lower order curves. This represented an expansion beyond what was permitted by straightedge and compass constructions.[5] Other curves like the quadratrix and spiral, where only some of whose points could be constructed, were termed mechanical and were not considered suitable for mathematical study. Descartes also devised an algebraic method for finding the normal at any point of a curve whose equation is known. The construction of the tangents to the curve then easily follows and Descartes applied this algebraic procedure for finding tangents to several curves.

The third book, On the Construction of Solid and Supersolid Problems, is more properly algebraic than geometric and concerns the nature of equations and how they may be solved. He recommends that all terms of an equation be placed on one side and set equal to 0 to facilitate solution. He points out the factor theorem for polynomials and gives an intuitive proof that a polynomial of degree n has n roots. He systematically discussed negative and imaginary roots[6] of equations and explicitly used what is now known as Descartes' rule of signs.

Aftermath

Descartes wrote La Géométrie in French rather than the language used for most scholarly publication at the time, Latin. His exposition style was far from clear, the material was not arranged in a systematic manner and he generally only gave indications of proofs, leaving many of the details to the reader.[7] His attitude toward writing is indicated by statements such as "I did not undertake to say everything," or "It already wearies me to write so much about it," that occur frequently. Descartes justifies his omissions and obscurities with the remark that much was deliberately omitted "in order to give others the pleasure of discovering [it] for themselves."

Descartes is often credited with inventing the coordinate plane because he had the relevant concepts in his book,[8] however, nowhere in La Géométrie does the modern rectangular coordinate system appear. This and other improvements were added by mathematicians who took it upon themselves to clarify and explain Descartes' work.

This enhancement of Descartes' work was primarily carried out by Frans van Schooten, a professor of mathematics at Leiden and his students. Van Schooten published a Latin version of La Géométrie in 1649 and this was followed by three other editions in 1659−1661, 1683 and 1693. The 1659−1661 edition was a two volume work more than twice the length of the original filled with explanations and examples provided by van Schooten and his students. One of these students, Johannes Hudde provided a convenient method for determining double roots of a polynomial, known as Hudde's rule, that had been a difficult procedure in Descartes's method of tangents. These editions established analytic geometry in the seventeenth century.[9]

See also

Notes

  1. ^ Descartes 2006, p. 1x
  2. ^ Descartes 2006, p.1xiii "This short work marks the moment at which algebra and geometry ceased being separate."
  3. ^ this section follows Burton 2011, pp. 367-375
  4. ^ Pappus discussed the problems in his commentary on the Conics of Apollonius.
  5. ^ Boyer 2004, pp. 88-89
  6. ^ he was one of the first to use this term
  7. ^ Boyer 2004, pp. 103-104
  8. ^ A. D. Aleksandrov; Andréi Nikoláevich Kolmogórov; M. A. Lavrent'ev (1999). "§2: Descartes' two fundamental concepts". Mathematics, its content, methods, and meaning (Reprint of MIT Press 1963 ed.). Courier Dover Publications. pp. 184 ff. ISBN 0-486-40916-3.
  9. ^ Boyer 2004, pp. 108-109

References

Further reading

Read other articles:

SandtonGautrain rapid transit stationOutside view of Sandton StationGeneral informationLine(s)  East–West Line  North–South LinePlatforms1 island platform (upper level)1 side platform (lower level)Tracks3ConstructionDepth45 m (148 ft)AccessibleYesHistoryOpened8 June 2010Services Preceding station Gautrain Following station Terminus East–West Line Marlborotowards OR Tambo Rosebanktowards Park Station North–South Line Marlborotowards Hatfield Sandton is a ...

 

 

Amigurumi llama mengenakan kostum dinosaurus Amigurumi (Jepang: 編みぐるみcode: ja is deprecated , terj. har. boneka rajutan atau kaitan) adalah seni Jepang dalam merajut atau merenda makhluk-makhluk kecil yang terbuat dari benang. Kata tersebut merupakan gabungan dari kata Jepang 編み ami, yang berarti rajutan atau kaitan, dan 包み kurumi, yang secara harafiah berarti pembungkus, seperti dalam 縫い包み nuigurumi boneka yang dijahit.[1] Amigurumi memiliki ukuran yang berv...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Gangguan terkait CDK13Penampilan wajah khas seseorang dengan gangguan terkait CDK13Informasi umumNama lainCacat jantung bawaan, dysmorphic facial features and intellectual developmental disorder (CHDFIDD), CDK13-related CHDFIDDSpesialisasiGenetika kedo...

Design, development and deployment of mixed-initiative human-computer systems For other uses, see Human-centered computing (disambiguation). Human-centered computing (HCC) studies the design, development, and deployment of mixed-initiative human-computer systems. It is emerged from the convergence of multiple disciplines that are concerned both with understanding human beings and with the design of computational artifacts.[1] Human-centered computing is closely related to human-comput...

 

 

Mozilla FoundationLogo Mozilla Foundation(Lihat: maskot Mozilla)Didirikan15 Juli 2003LokasiMountain View, California, USAKoordinatKoordinat: 37°23′17″N 122°04′58″W / 37.38792°N 122.08284°W / 37.38792; -122.08284Asal mulaMozilla OrganizationProdukMozilla FirefoxMozilla Thunderbirdselengkapnya…FokusInternetPendapatan104,3 juta USD (2009)[1][2]Anak perusahaanMozilla Corp.Mozilla Messaging Inc.Situs resmimozilla.org Pintu masuk ke kantor di Mo...

 

 

ZTE V9 Tablet AndroidMerekV9PembuatZTEJaringan2G Network GSM 850 / 900 / 1800 / 19003G Network HSDPA HSDPA 900 / 2100[1]Dimensi192 mm (7,6 in) H 110 mm (4,3 in) W12 mm (0,47 in) DBerat403 g (14,2 oz)Sistem OperasiAndroid OS, v2.1 (Eclair), upgradable to v2.2MemoriPractically unlimited entries and fields, PhotocallPenyimpanan512 MB ROM, 512 MB RAMKartu ExternalmicroSD, up to 32GBBateraiStandard battery, Li-Ion 3400 mAhStand-by Up to 500 hInputAcc...

American politician (born 1951) Colleen HanabusaOfficial portrait, 2011Member of the U.S. House of Representativesfrom Hawaii's 1st districtIn officeNovember 14, 2016 – January 3, 2019Preceded byMark TakaiSucceeded byEd CaseIn officeJanuary 3, 2011 – January 3, 2015Preceded byCharles DjouSucceeded byMark Takai11th President of the Hawaii SenateIn officeJanuary 2, 2009 – November 6, 2010Preceded byRobert BundaSucceeded byShan TsutsuiMember of the Ha...

 

 

United States Article I court This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (January 2013) (Learn how and when to remove this template message) United States Air Force Court of Criminal Appeals(A.F.C.C.A.)LocationJoint Base Andrews(Prince George's County, Maryland)Appeals toCourt of Appeals for the Armed ForcesEstablis...

 

 

For the neighborhood in Syracuse, see Strathmore, Syracuse. Hamlet in New York, United StatesStrathmore, New YorkHamletThe sign at the entrance to the Strathmore Village portion of the hamlet on June 15, 2021.Nickname: The StrathmoresStrathmore, New YorkLocation on Long IslandShow map of Long IslandStrathmore, New YorkLocation within the state of New YorkShow map of New YorkCoordinates: 40°47′31″N 73°40′38″W / 40.79194°N 73.67722°W / 40.79194; -73.6772...

Prefecture and commune in Brittany, FranceSaint-Brieuc Sant-Berioec (Gallo) Sant-Brieg (Breton)Prefecture and communeSaint-Brieuc Cathedral FlagCoat of armsLocation of Saint-Brieuc Saint-BrieucShow map of FranceSaint-BrieucShow map of BrittanyCoordinates: 48°30′49″N 2°45′55″W / 48.5136°N 2.7653°W / 48.5136; -2.7653CountryFranceRegionBrittanyDepartmentCôtes-d'ArmorArrondissementSaint-BrieucCantonSaint-Brieuc-1 and 2IntercommunalitySaint-Brieuc ArmorGo...

 

 

Hit the LightsSingel oleh Selena Gomez & the Scenedari album When the Sun Goes DownDirilis16 November 2011 (2011-11-16) (Canada only)20 Januari 2012 (2012-01-20)FormatDigital downloadDirekam2011GenreElectronic dance[1]Durasi3:14LabelHollywoodPenciptaLeah Haywood, Daniel James and Tony NilssonProduserDreamlab Hit the Lights adalah lagu yang dinyanyikan oleh band Amerika Selena Gomez & the Scene dari album ketiga mereka, When the Sun Goes Down. Lagu ini adalah single k...

 

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

 

American politician This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (August 2020) (Learn how and when to remove this message) Deborah GlickMember of the New York State Assemblyfrom the 66th districtIncumbentAssumed office January 3, 1991Preceded byWilliam F. Passannante Personal detailsBorn (1950-12-24) Decem...

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

 

 

Standard developed by international standards organizations An international standard is a technical standard developed by one or more international standards organizations. International standards are available for consideration and use worldwide. The most prominent such organization is the International Organization for Standardization (ISO). Other prominent international standards organizations including the International Telecommunication Union (ITU) and the International Electrotechnical...

 

 

  提示:此条目页的主题不是萧。 簫琴簫與洞簫木管樂器樂器別名豎吹、豎篴、通洞分類管樂器相關樂器 尺八 东汉时期的陶制箫奏者人像,出土於彭山江口汉崖墓,藏於南京博物院 箫又稱洞簫、簫管,是中國古老的吹管樂器,特徵為單管、豎吹、開管、邊稜音發聲[1]。「簫」字在唐代以前本指排簫,唐宋以來,由於單管豎吹的簫日漸流行,便稱編管簫爲排簫�...

Vous lisez un « bon article » labellisé en 2018. Pour les articles homonymes, voir McGregor. Conor McGregor Conor McGregor en mars 2015. Fiche d’identité Nom complet Conor Anthony McGregor Surnom The Notorious Nationalité Irlandais Naissance 14 juillet 1988 (35 ans)Dublin, Irlande Style Boxe anglaise Équipe SBG Ireland Taille 5′ 8″ (1,73 m)[1] Catégorie Poids plumes Poids légers Poids mi-moyens Palmarès en MMA Combats 028 Victoires 022 Défaites 006 Ti...

 

 

Saint-Pierre-des-Fleurscomune (dettagli) LocalizzazioneStato Francia Regione Normandia Dipartimento Eure ArrondissementÉvreux CantoneBourgtheroulde-Infreville TerritorioCoordinate49°15′N 0°58′E49°15′N, 0°58′E (Saint-Pierre-des-Fleurs) Superficie2,79 km² Abitanti1 303[1] (2009) Densità467,03 ab./km² Altre informazioniCod. postale27370 Fuso orarioUTC+1 Codice INSEE27593 CartografiaSaint-Pierre-des-Fleurs Sito istituzionaleModifica dati su Wikidat...