From 1908 to 1912, Brillouin studied physics at the École Normale Supérieure, in Paris. From 1911 he studied under Jean Perrin until he left for the Ludwig Maximilian University of Munich (LMU), in 1912. At LMU, he studied theoretical physics with Arnold Sommerfeld. Just a few months before Brillouin's arrival at LMU, Max von Laue had conducted his experiment showing X-ray diffraction in a crystal lattice. In 1913, he went back to France to study at the University of Paris and it was in this year that Niels Bohr submitted his first paper on the Bohr model of the hydrogen atom.[1] From 1914 until 1919, during World War I, he served in the military, developing the valve amplifier with G. A. Beauvais.[2] At the conclusion of the war, he returned to the University of Paris to continue his studies with Paul Langevin, and was awarded his Docteur ès science in 1920.[3] Brillouin's thesis jury was composed of Langevin, Marie Curie, and Jean Perrin and his thesis topic was on the quantum theory of solids. In his thesis, he proposed an equation of state based on the atomic vibrations (phonons) that propagate through it. He also studied the propagation of monochromatic light waves and their interaction with acoustic waves, i.e., scattering of light with a frequency change, which became known as Brillouin scattering.[4][5]
Career
After receipt of his doctorate, Brillouin became the scientific secretary of the reorganized Journal de Physique et le Radium. In 1932, he became associate director of the physics laboratories at the Collège de France. In 1926, Gregor Wentzel,[6]Hendrik Kramers,[7] and Brillouin[8] independently developed what is known as the Wentzel–Kramers–Brillouin approximation, also known as the WKB method, classical approach, and phase integral method.[9] In 1928, after the Institut Henri Poincaré was established, he was appointed as professor to the Chair for Theoretical Physics. During his work on the propagation of electron waves in a crystal lattice, he introduced the concept of Brillouin zones in 1930. Quantum mechanical perturbations techniques by Brillouin and by Eugene Wigner resulted in what is known as the Brillouin–Wigner formula.[4][5][10]
Since Brillouin's study with Sommerfeld, he was interested and did pioneering work in the diffraction of electromagnetic radiation in a dispersive media.[11] As a specialist in radio wave propagation, Brillouin was appointed director general of the French state-run agency, Radiodiffusion Nationale about a month before war with Germany, August 1939. In May 1940, upon the collapse of France, as part of the government, he retired to Vichy. Six months later, he resigned and went to the United States.[4][5]
Brillouin was a founder of modern solid state physics for which he discovered, among other things, Brillouin zones. He applied information theory to physics and the design of computers and coined the concept of negentropy to demonstrate the similarity between entropy and information.[4][5]
Brillouin offered a solution to the problem of Maxwell's demon. In his book, Relativity Reexamined, he called for a "painful and complete re-appraisal" of relativity theory which "is now absolutely necessary."
Scientific Uncertainty and Information (Academic Press, 1964)
Tensors in Mechanics and Elasticity. Translated from the French By Robert O. Brennan. (Engineering Physics: An International Series of Monographs, Vol. 2) (Academic Press, 1964)
Relativity Reexamined (Academic Press, 1970)
Tres Vidas Ejemplares en la Física (Madrid, Marzo, 1970)
References
^Bohr ModelArchived 2007-07-04 at the Wayback Machine – Niels Bohr On the Constitution of Atoms and Molecules, Philosophical Magazine Series 6, Volume 26, July 1913, pp. 1–25.
^M. A. Ainslie, Principles of Sonar Performance Modeling (Springer, 2010), p12
^Brillouin thesis title: La théorie des solides et les quanta, as cited in Mehra, Volume 5, Part 2, p. 882.
^Gregor Wentzel Eine Verallgemeinerun der Quantenbedingungen für die Zwecke der Wellenmechanik, Z. Physik.38 518–529 (1926). As cieted in Mehra, 2001, Volume 5, Part 2, p. 961.
^H. A. Kramers Wellenmechanik und halbzahlige Quantisierung, Z. Physik.39 828-840 (1926). As cited in Mehra, 2001, Volume 5, Part 2, p. 920.
^Léon Brillouin La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives, Comptes rendus (Paris) 183 24–26 (1926). As cited in Mehra, 2001, Volume 5, Part 2, p. 882.
^Léon Brillouin Über die Fortpflanzung des Lichtes in dispergierenden Medien, Ann. d. Phys. (4) 44 203–240 (1914), as cited in Mehra, Volume 1, Part 2, p. 746.
Mehra, Jagdish, and Helmut Rechenberg, The Historical Development of Quantum Theory. Volume 1 Part 2 The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld 1900–1925: Its Foundation and the Rise of Its Difficulties. (Springer, 2001) ISBN0-387-95175-X
Mehra, Jagdish, and Helmut Rechenberg, The Historical Development of Quantum Theory. Volume 5 Erwin Schrödinger and the Rise of Wave Mechanics. Part 2 Schrödinger in Vienna and Zurich 1887–1925. (Springer, 2001) ISBN0-387-95180-6
Schiff, Leonard I, Quantum Mechanics (McGraw–Hill, 3rd edition, 1968)
Mosseri, Rémy, Léon Brillouin à la croisée des ondes (Belin, Paris, 1999) ISBN2-7011-2299-6