Konrad Ernst Otto Zuse (German:[ˈkɔnʁaːtˈtsuːzə]; 22 June 1910 – 18 December 1995) was a German civil engineer, pioneering computer scientist, inventor and businessman. His greatest achievement was the world's first programmable computer; the functional program-controlled Turing-completeZ3 became operational in May 1941. Thanks to this machine and its predecessors, Zuse is regarded by some as the inventor and father of the modern computer.[5][6][7][8][9][10]
Much of his early work was financed by his family and commerce, but after 1939 he was given resources by the government of Nazi Germany.[18] Due to World War II, Zuse's work went largely unnoticed in the United Kingdom and United States. Possibly his first documented influence on a US company was IBM's option on his patents in 1946.[19] The Z4 also served as the inspiration for the construction of the ERMETH, the first Swiss computer and one of the first in Europe.[20]
He enrolled at Technische Hochschule Berlin (now Technische Universität Berlin) and explored both engineering and architecture, but found them boring. Zuse then pursued civil engineering, graduating in 1935.[21]
Career
After graduation, Zuse worked for the Ford Motor Company, using his artistic skills in the design of advertisements.[14] He started work as a design engineer at the Henschel aircraft factory in Schönefeld near Berlin. This required the performance of many routine calculations by hand, leading him to theorize and plan a way of doing them by machine.[22]
Beginning in 1935, he experimented in the construction of computers in his parents' flat on Wrangelstraße 38, moving with them into their new flat on Methfesselstraße 10, the street leading up the Kreuzberg, Berlin.[23]: 418 Working in his parents' apartment in 1936, he produced his first attempt, the Z1, a floating-point binary mechanical calculator with limited programmability, reading instructions from a perforated 35 mm film.[14]
In 1937, Zuse submitted two patents that anticipated a von Neumann architecture. In 1938, he finished the Z1 which contained some 30,000 metal parts and never worked well due to insufficient mechanical precision. On 30 January 1944, the Z1 and its original blueprints were destroyed with his parents' flat and many neighbouring buildings by a British air raid in World War II.[23]: 426
Zuse completed his work entirely independently of other leading computer scientists and mathematicians of his day. Between 1936 and 1945, he was in near-total intellectual isolation.[24]
1939–1945
In 1939, Zuse was called to military service, where he was given the resources to ultimately build the Z2.[18] In September 1940 Zuse presented the Z2, covering several rooms in the parental flat, to experts of the Deutsche Versuchsanstalt für Luftfahrt (DVL; German Research Institute for Aviation).[23]: 424 The Z2 was a revised version of the Z1 using telephone relays.
In 1940, the German government began funding him and his company through the Aerodynamische Versuchsanstalt (AVA, Aerodynamic Research Institute, forerunner of the DLR),[25] which used his work for the production of glide bombs. Zuse built the S1 and S2 computing machines, which were special purpose devices which computed aerodynamic corrections to the wings of radio-controlled flying bombs. The S2 featured an integrated analog-to-digital converter under program control, making it the first process-controlled computer.[26]: 75
In 1941 Zuse started a company, Zuse Apparatebau (Zuse Apparatus Construction), to manufacture his machines,[27] renting a workshop on the opposite side in Methfesselstraße 7 and stretching through the block to Belle-AllianceStraße 29 (renamed and renumbered as Mehringdamm 84 in 1947).[23]: 418, 425
In 1941, he improved on the basic Z2 machine, and built the Z3. On 12 May 1941 Zuse presented the Z3, built in his workshop, to the public.[23]: 425 [28] The Z3 was a binary 22-bit floating-point calculator featuring programmability with loops but without conditional jumps, with memory and a calculation unit based on telephone relays. The telephone relays used in his machines were largely collected from discarded stock. Despite the absence of conditional jumps, the Z3 was a Turing complete computer. However, Turing-completeness was never considered by Zuse (who was unaware of Turing's work and had practical applications in mind) and only demonstrated in 1998 (see History of computing hardware).
The Z3, the first fully operational electromechanical computer, was partially financed by German government-supported DVL, which wanted their extensive calculations automated. A request by his co-worker Helmut Schreyer—who had helped Zuse build the Z3 prototype in 1938[29]—for government funding for an electronic successor to the Z3 was denied as "strategically unimportant".
In 1937, Schreyer had advised Zuse to use vacuum tubes as switching elements; Zuse at this time considered it a "crazy idea" (Schnapsidee in his own words). Zuse's workshop on Methfesselstraße 7 (along with the Z3) was destroyed in an Allied Air raid in late 1943 and the parental flat with Z1 and Z2 on 30 January the following year, whereas the successor Z4, which Zuse had begun constructing in 1942[26]: 75 in new premises in the Industriehof on Oranienstraße 6, remained intact.[23]: 428
On 3 February 1945, aerial bombing caused devastating destruction in the Luisenstadt, the area around Oranienstraße, including neighbouring houses.[30] This event effectively brought Zuse's research and development to a complete halt. The partially finished, telephone relay-based Z4 computer was then packed and moved from Berlin on 14 February, arriving in Göttingen approximately two weeks later.[23]: 428
These machines contributed to the Henschel Werke Hs 293 and Hs 294 guided missiles developed by the German military between 1941 and 1945, which were the precursors to the modern cruise missile.[26]: 75 [31][32] The circuit design of the S1 was the predecessor of Zuse's Z11.[26]: 75 Zuse believed that these machines had been captured by occupying Soviet troops in 1945.[26]: 75
While working on his Z4 computer, Zuse realised that programming in machine code was too complicated. He started working on a PhD thesis,[33] containing groundbreaking research years ahead of its time,[editorializing] mainly the first high-level programming language, Plankalkül ("Plan Calculus") and, as an elaborate example program, the first real computer chess engine.[34]
1945–1995
After the 1945 Luisenstadt bombing, he fled from Berlin to the rural Allgäu.[35] In the extreme deprivation of post-war Germany Zuse was unable to build computers.
Zuse founded one of the earliest computer companies: the Zuse-Ingenieurbüro Hopferau. Capital was raised in 1946 through ETH Zurich and an IBM option on Zuse's patents.[36]
In 1947, according to the memoirs of the German computer pioneer Heinz Billing from the Max Planck Institute for Physics, there was a meeting between Alan Turing and Konrad Zuse in Göttingen.[37] The encounter had the form of a colloquium. Participants were Womersley, Turing, Porter from England and a few German researchers like Zuse, Walther, and Billing. (For more details see Herbert Bruderer, Konrad Zuse und die Schweiz).
It was not until 1949 that Zuse was able to resume work on the Z4. He would show the computer to the mathematician Eduard Stiefel of the ETH Zurich. The two men settled a deal to lend the Z4 to the ETH.[38]
In November 1949, Zuse founded another company, Zuse KG, in Haunetal-Neukirchen; in 1957, the company's head office moved to Bad Hersfeld. The Z4 was finished and delivered to the ETH Zurich in July 1950, where it proved very reliable.[14] At that time, it was the only working digital computer in Central Europe,[39] and the second computer in the world to be sold or loaned, beaten only by the BINAC, which never worked properly after it was delivered. Other computers, all numbered with a leading Z, up to Z43,[40] were built by Zuse and his company. Notable are the Z11, which was sold to the optics industry and to universities, and the Z22, the first computer with a memory based on magnetic storage.[41]
Unable to do any hardware development, he continued working on Plankalkül, eventually publishing some brief excerpts of his thesis in 1948 and 1959; the work in its entirety, however, remained unpublished until 1972.[34] The PhD thesis was submitted at University of Augsburg, but it was rejected because Zuse forgot to pay the DM 400 university enrollment fee. The rejection did not bother him.[42]
Plankalkül slightly influenced the design of ALGOL 58[43] but was itself implemented only in 1975 in a dissertation by Joachim Hohmann.[44]Heinz Rutishauser, one of the inventors of ALGOL, wrote: "The very first attempt to devise an algorithmic language was undertaken in 1948 by K. Zuse. His notation was quite general, but the proposal never attained the consideration it deserved." Further implementations followed in 1998 and then in 2000 by a team from the Free University of Berlin. Donald Knuth suggested a thought experiment: What might have happened had the bombing not taken place, and had the PhD thesis accordingly been published as planned?[34]
In 1956, Zuse began to work on a high precision, large format plotter. It was demonstrated at the 1961 Hanover Fair,[45] and became well known also outside of the technical world thanks to Frieder Nake's pioneering computer art work.[46] Other plotters designed by Zuse include the ZUSE Z90 and ZUSE Z9004.[45]
Between 1989 and 1995, Zuse conceptualized and created a purely mechanical, extensible, modular tower automaton he named "helix tower" ("Helixturm"). The structure is based on a gear drive that employs rotary motion (e.g. provided by a crank) to assemble modular components from a storage space, elevating a tube-shaped tower; the process is reversible, and inverting the input direction will deconstruct the tower and store the components. In 2009, the Deutsches Museum restored Zuse's original 1:30 functional model that can be extended to a height of 2.7 m.[48] Zuse intended the full construction to reach a height of 120 m, and envisioned it for use with wind power generators and radio transmission installations.[3][4][49][2]
Between 1987 and 1989, Zuse recreated the Z1, suffering a heart attack midway through the project. It cost 800,000 DM (approximately $500,000) and required four individuals (including Zuse) to assemble it. Funding for this retrocomputing project was provided by Siemens and a consortium of five companies.[50]
Personal life
Konrad Zuse married Gisela Brandes in January 1945, employing a carriage, himself dressed in tailcoat and top hat and with Gisela in a wedding veil, for Zuse attached importance to a "noble ceremony". Their son Horst, the first of five children, was born in November 1945.
While Zuse never became a member of the Nazi Party, he is not known to have expressed any doubts or qualms about working for the Nazi war effort. Much later, he suggested that in modern times, the best scientists and engineers usually have to choose between either doing their work for more or less questionable business and military interests in a Faustian bargain, or not pursuing their line of work at all.[51]
After Zuse retired, he focused on his hobby of painting.[52] He signed his paintings as "Kuno [von und zu] See".
Computer History Museum Fellow Award in 1999 "for his invention of the first program-controlled, electromechanical, digital computer and the first high-level programming language, Plankalkül."[56]
The Konrad Zuse Medal of the Gesellschaft für Informatik, and the Konrad Zuse Medal of the Zentralverband des Deutschen Baugewerbes (Central Association of German Construction), are both named after Zuse.
A replica of the Z3, as well as the original Z4, is in the Deutsches Museum in Munich. The Deutsches Technikmuseum in Berlin has an exhibition devoted to Zuse, displaying twelve of his machines, including a replica of the Z1 and several of Zuse's paintings.
The 100th anniversary of his birth was celebrated by exhibitions, lectures and workshops.[57][58]
^Rojas, Raúl (1997). "Konrad Zuse's Legacy: The Architecture of the Z1 and Z3"(PDF). IEEE Annals of the History of Computing. 19 (2): 5–16. doi:10.1109/85.586067. Archived(PDF) from the original on 26 April 2021. Retrieved 12 May 2021. Konrad Zuse is popularly recognized in Germany as the father of the computer, and his Z1, a programmable automaton built from 1936 to 1938, has been called the first computer in the world. Other nations reserve this honor for one of their own scientists, and there has been a long and often acrimonious debate on the issue of who is the true inventor of the computer.
^von Leszczynski, Ulrike (27 June 2010). "Z like Zuse: German inventor of the computer". monstersandcritics.com. Deutsche Presse-Agentur. Archived from the original on 22 May 2013. Retrieved 22 May 2013. There's strong evidence that [Zuse] built the world's first computer in Berlin.
^Bellis, Mary (15 May 2019) [First published 2006 at inventors.about.com/library/weekly/aa050298.htm]. "Biography of Konrad Zuse, Inventor and Programmer of Early Computers". thoughtco.com. Dotdash Meredith. Archived from the original on 13 December 2020. Retrieved 3 February 2021. Konrad Zuse earned the semiofficial title of 'inventor of the modern computer'
^Bruderer, Herbert (2021). Milestones in Analog and Digital Computing (3rd ed.). Springer. pp. 13, 961. ISBN978-3030409739.
^Bruderer, Herbert (2021). Milestones in Analog and Digital Computing (3rd ed.). Springer. p. 14. ISBN978-3030409739.
^Zuse, Konrad (1943), "Ansätze einer Theorie des allgemeinen Rechnens unter besonderer Berücksichtigung des Aussagenkalküls und dessen Anwendung auf Relaisschaltungen" [Inception of a universal theory of computation with special consideration of the propositional calculus and its application to relay circuits], unpublished manuscript, Zuse Papers 045/018.
^ abZuse, Konrad (1967). "Rechnender Raum"(PDF). Elektronische Datenverarbeitung (in German). 8. Bad Hersfeld, Germany: 336–344. Archived(PDF) from the original on 18 June 2020. Retrieved 2 August 2022. (9 pages)
^Bruderer, Herbert (2021). Milestones in Analog and Digital Computing (3rd ed.). Springer. pp. 1009, 1087. ISBN978-3030409739.
^ abSchofield, Jack (20 December 1995). "Konrad Zuse: First on the digital track". The Guardian. p. 13.
^Lee, J. A. N. (1995). "Konrad Zuse". computer.org. IEEE Computer Society and the Institute of Electrical and Electronics Engineers Inc. Archived from the original on 4 December 2022. Retrieved 14 April 2022.
^ abcdefgSpode, Hasso (1994). Engel, Helmut; Jersch-Wenzel, Stefi; Treue, Wilhelm (eds.). Der Computer – eine Erfindung aus Kreuzberg, Methfesselstraße 10/Oranienstraße 6. Geschichtslandschaft Berlin: Orte und Ereignisse (5 volumes) (in German). Vol. 5: Kreuzberg. Berlin, Germany: Nicolai. pp. 418–429. ISBN3-87584-474-2.
^ abcdefZuse, Konrad (1993). Wössner, Hans (ed.). The Computer, My Life. Berlin/Heidelberg, Germany: Springer-Verlag. pp. 12–13, 75. ISBN978-3-540-56453-9. pp. 12–13: The only problem was that the progressive spirit at our school did not always correspond to my parents' ideas. This was particularly true for religious instruction, which now and again seemed even to us pupils to be rather too enlightened. After the 'Abitur' my parents wanted to go to communion with me; it was a terrible disappointment to them when I wouldn't go. They had lived under the illusion that I was a good student when it came to religion, too, which wasn't the case. […] I remember a poem presented by a student, which made a great impression on me. The essence of the poem read, "Basically, you are always alone". I have forgotten the name of the poet, but have often experienced the truth of these words in later life.
^Selig, Bernd (October 2011). "Bomber über Kreuzberg". Kreuzberger Chronik (in German). Kreuzberg, Berlin, Germany: Außenseiter Verlag. Archived from the original on 3 August 2022. Retrieved 3 August 2022.
^ abcKnuth & Pardo: The early development of programming languages. In Nicholas Metropolis (Ed): History of Computing in the Twentieth Century, p. 203.
^Lippe, Wolfram M. (13 April 2010) [2007]. "Kapitel 14 – Die ersten programmierbaren Rechner"(PDF) (in German). Archived from the original(PDF) on 19 July 2011. Retrieved 21 June 2010. [in 1949 Professor Stiefel from ETH Zürich] was not a little surprised when he found the Z4, which was already a bit battered from the outside, set up in a horse stable. Nevertheless, he dictated to Zuse a simple differential equation that Zuse could immediately program, demonstrate on the machine and solve. After that he concluded a contract with Zuse: the Z4 should be loaned to the ETH after a thorough overhaul and cleaning.
^Joachim Hohmann: Der Plankalkül im Vergleich mit algorithmischen Sprachen. Reihe Informatik und Operations Research, S. Toeche-Mittler Verlag, Darmstadt 1979, ISBN3-87820-028-5.
^Böttiger, Helmut[in German] (26 October 2011). "Der Philosoph - Die technische Keimzelle". In Rabenseifner, Adolf (ed.). Konrad Zuse: Erfinder, Unternehmer, Philosoph und Künstler (in German) (1 ed.). Petersberg, Germany: Michael Imhof Verlag. pp. 69–75 [70–71]. ISBN978-3-86568-743-2. (128 pages)
^Jane Smiley (2010). The Man Who Invented the Computer: The Biography of John Atanasoff, Digital Pioneer. Random House Digital, Inc. ISBN978-0-385-52713-2. Like Alan Turing, Zuse was educated in a system that focused on a child's emotional and philosophical life as well as his intellectual life, and at the end of school, like Turing, Zuse found himself to be something of an outsider—to the disappointment of his very conventional parents, he no longer believed in God or religion.
Zuse, Konrad. Direction-bound engraving tool with program control. U.S. Patent 3163936
U.S. Patents 3234819; 3306128; 3408483; 3356852; 3316442
Jürgen Alex, Hermann Flessner, Wilhelm Mons, Horst Zuse: Konrad Zuse: Der Vater des Computers. Parzeller, Fulda 2000, ISBN3-7900-0317-4
Raul Rojas (ed.): Die Rechenmaschinen von Konrad Zuse. Springer, Berlin 1998, ISBN3-540-63461-4.
Wilhelm Füßl (ed.): 100 Jahre Konrad Zuse. Einblicke in den Nachlass, München 2010, ISBN978-3-940396-14-3.
Jürgen Alex: "Wege und Irrwege des Konrad Zuse." In: Spektrum der Wissenschaft (German edition of Scientific American) 1/1997, ISSN0170-2971.
Hadwig Dorsch: Der erste Computer. Konrad Zuses Z1 – Berlin 1936. Beginn und Entwicklung einer technischen Revolution. Mit Beiträgen von Konrad Zuse und Otto Lührs. Museum für Verkehr und Technik, Berlin 1989.
Clemens Kieser: "'Ich bin zu faul zum Rechnen': Konrad Zuses Computer Z22 im Zentrum für Kunst und Medientechnologie Karlsruhe." In: Denkmalpflege in Baden-Württemberg, 4/34/2005, Esslingen am Neckar, S. 180–184, ISSN0342-0027.
Mario G. Losano (ed.), Zuse. L'elaboratore nasce in Europa. Un secolo di calcolo automatico, Etas Libri, Milano 1975, pp. XVIII–184.
Arno Peters: Was ist und wie verwirklicht sich Computer-Sozialismus: Gespräche mit Konrad Zuse. Verlag Neues Leben, Berlin 2000, ISBN3-355-01510-5.
Paul Janositz: Informatik und Konrad Zuse: "Der Pionier des Computerbaus in Europa – Das verkannte Genie aus Adlershof." In: Der Tagesspiegel Nr. 19127, Berlin, 9. März 2006, Beilage Seite B3.
Jürgen Alex: Zum Einfluß elementarer Sätze der mathematischen Logik bei Alfred Tarski auf die drei Computerkonzepte des Konrad Zuse. TU Chemnitz 2006.
Alex, Jürgen (2007). Zur Entstehung des Computers – Von Alfred Tarski zu Konrad Zuse […] – Tertium non datur. Düsseldorf, Germany: VDI-Verlag. ISBN978-3-18-150051-4. ISSN0082-2361.