Kobon triangle problem

Kobon triangles generated with 3, 4 and 5 straight line segments.
Unsolved problem in mathematics:
How many non-overlapping triangles can be formed in an arrangement of lines?

The Kobon triangle problem is an unsolved problem in combinatorial geometry first stated by Kobon Fujimura (1903-1983). The problem asks for the largest number N(k) of nonoverlapping triangles whose sides lie on an arrangement of k lines. Variations of the problem consider the projective plane rather than the Euclidean plane, and require that the triangles not be crossed by any other lines of the arrangement.[1]

Known upper bounds

Saburo Tamura proved that the number of nonoverlapping triangles realizable by lines is at most . G. Clément and J. Bader proved more strongly that this bound cannot be achieved when is congruent to 0 or 2 (mod 6).[2] The maximum number of triangles is therefore at most one less in these cases. The same bounds can be equivalently stated, without use of the floor function, as:

Solutions yielding this number of triangles are known when is 3, 4, 5, 6, 7, 8, 9, 13, 15, 17, 19, 21, 25 or 29.[3] [4] [5] For k = 10, 11 and 12, the best solutions known reach a number of triangles one less than this upper bound.

Furthermore, the upper bound for even values can be improved: .[4] This bound can be reached for 10, 12 and 16.[3]

Known constructions

The following bounds are known:

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ... 25 ... 29 OEIS
Tamura's upper bound on N(k) 1 2 5 8 11 16 21 26 33 40 47 56 65 74 85 96 107 120 133 ... 191 ... 261 A032765
Improvements on Tamura's [2][4] 1 2 5 7 11 15 21 25 33 38 47 54 65 72 85 94 107 117 133 ... 191 ... 261 -
best known solution 1 2 5 7 11 15 21 25 32 38 47 53 65 72 85 93 107 115 133 ... 191 ... 261 A006066

In the projective plane

Five lines forming a pentagram, with one more horizontal line below them, form seven triangles: five in the pentagram, and two more formed by pairs of rays emanating from the corners of the pentagram. If the lower horizontal line is moved to the line at infinity of the projective plane, all five pairs of rays emanating from the pentagram would form triangles with it.

The version of the problem in the projective plane allows more triangles. In this version, it is convenient to include the line at infinity as one of the given lines, after which the triangles appear in three forms:

  • ordinary triangles among the remaining lines, bounded by three finite line segments,
  • triangles bounded by two rays that meet at a common apex and by a segment of the line at infinity, and
  • triangles bounded by a finite line segment and by two parallel rays that meet at a vertex on the line at infinity.

For instance, an arrangement of five finite lines forming a pentagram, together with a sixth line at infinity, has ten triangles: five in the pentagram, and five more bounded by pairs of rays.

D. Forge and J. L. Ramirez Alfonsin provided a method for going from an arrangement in the projective plane with lines and triangles (the maximum possible for ), with certain additional properties, to another solution with lines and triangles (again maximum), with the same additional properties. As they observe, it is possible to start this method with the projective arrangement of six lines and ten triangles described above, producing optimal projective arrangements whose numbers of lines are

6, 11, 21, 41, 81, ... .

Thus, in the projective case, there are infinitely many different numbers of lines for which an optimal solution is known.[1]

Examples

See also

References

  1. ^ a b Forge, D.; Ramírez Alfonsín, J. L. (1998), "Straight line arrangements in the real projective plane", Discrete and Computational Geometry, 20 (2): 155–161, doi:10.1007/PL00009373.
  2. ^ a b "G. Clément and J. Bader. Tighter Upper Bound for the Number of Kobon Triangles. Draft Version, 2007" (PDF). Archived from the original (PDF) on 2017-11-11. Retrieved 2008-03-03.
  3. ^ a b Ed Pegg Jr. on Math Games
  4. ^ a b c Bartholdi, Nicolas; Blanc, Jérémy; Loisel, Sébastien (2008), "On simple arrangements of lines and pseudo-lines in and with the maximum number of triangles" (PDF), in Goodman, Jacob E.; Pach, János; Pollack, Richard (eds.), Surveys on Discrete and Computational Geometry: Proceedings of the 3rd AMS–IMS–SIAM Joint Summer Research Conference "Discrete and Computational Geometry—Twenty Years Later" held in Snowbird, UT, June 18–22, 2006, Contemporary Mathematics, vol. 453, Providence, Rhode Island: American Mathematical Society, pp. 105–116, arXiv:0706.0723, doi:10.1090/conm/453/08797, ISBN 978-0-8218-4239-3, MR 2405679
  5. ^ A006066

Read other articles:

Maximilien LuceLahirMaximilien Luce(1858-03-13)13 Maret 1858Paris, PrancisMeninggal6 Februari 1941(1941-02-06) (umur 82)Paris, PrancisKebangsaanPrancisDikenal atasLukisanGerakan politikNeo-Impressionism Self-portrait, c. 1925–1930 Maximilien Luce (13 Maret 1858 – 6 Februari 1941) adalah seniman Neo-impresionis Prancis yang produktif, dikenal karena lukisan, ilustrasi, ukiran, dan seni grafisnya, dan juga karena aktivisme anarkisnya. Berawal sebagai pengukir, ia kemudia...

 

Jehan Alain, Pemain organ dan komponis Prancis (1911-1940) Jehan Ariste Alain [ʒɑ̃ aʁist alɛ̃] (3 Februari 1911 – 20 Juni 1940) merupakan seorang organis, komponis, dan prajurit berkebangsaan Prancis. Ia lahir dari sebuah keluarga pemusik, dan belajar organ dari ayahandanya serta sejumlah guru lainnya. Ia menjadi komposer pada usia 18 tahun, dan menulis sampai pecahnya Perang Dunia II sepuluh tahun kemudian. Variations sur un thème de Clément Janequin Variasi pada sebuah karangan Cl...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Bungkuisme – berita · surat kabar · buku · cendekiawan · JSTOR Bungkuisme adalah sebuah istilah dalam sistem politik yang pertama kali diperkenalkan oleh Sulaiman Mamar, sosiolog Bugis dari Universitas Tadula...

Resolusi 563Dewan Keamanan PBBDataran Tinggi GolanTanggal21 Mei 1985Sidang no.2.581KodeS/RES/563 (Dokumen)TopikIsrael-Republik Arab SuriahRingkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Britania Raya Amerika Serikat Uni SovietAnggota tidak tetap Australia Burkina Faso Denmark Mesir India Madagaskar Peru Thailand Trinidad RSS Uk...

 

Orvieto commune di Italia Orvieto (it) Tempat Negara berdaulatItaliaRegion di ItaliaUmbraProvinsi di ItaliaProvinsi Terni NegaraItalia PendudukTotal19.461  (2023 )GeografiLuas wilayah281,27 km² [convert: unit tak dikenal]Ketinggian325 m Berbatasan denganAllerona Bagnoregio (en) Baschi Bolsena (en) Castel Giorgio Castel Viscardo Castiglione in Teverina (en) Civitella d'Agliano (en) Ficulle Lubriano (en) Montecchio Porano San Venanzo Todi SejarahSanto pelindungYosef Informasi tambaha...

 

King of the Belgians from 1909 to 1934 You can help expand this article with text translated from the corresponding article in French. (November 2020) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine...

Belgian cyclist Léon ScieurScieur in 1913Personal informationFull nameLéon ScieurNicknameLa LocomotiveBorn(1888-03-18)18 March 1888Florennes, BelgiumDied7 October 1969(1969-10-07) (aged 81)Florennes, BelgiumTeam informationDisciplineRoadRoleRiderMajor winsGrand Tours Tour de France General classification (1921) 3 individual stages (1920, 1921) One-day races and Classics Liège–Bastogne–Liège (1920) Léon Scieur (pronounced [le.ɔ̃ sjœʁ]; 19 March 1888 – 7 Oct...

 

Chronologies Données clés 1240 1241 1242  1243  1244 1245 1246Décennies :1210 1220 1230  1240  1250 1260 1270Siècles :XIe XIIe  XIIIe  XIVe XVeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Religion (,) et * Croisades   Science () et Santé et médecine   Terrorisme Calendriers Romain Chinois Grégorien Julien Hébraïque Hindou Hégirien Persan Républicain modifier Années de la santé et de la médecine ...

 

78th season in franchise history 2010 Philadelphia Eagles seasonOwnerJeffrey LurieGeneral managerHowie RosemanHead coachAndy ReidHome fieldLincoln Financial FieldResultsRecord10–6Division place1st NFC EastPlayoff finishLost Wild Card Playoffs(vs. Packers) 16–21Pro BowlersQB Michael VickWR DeSean JacksonOT Jason PetersCB Asante SamuelK David AkersAP All-ProsK David Akers (2nd team)SS Quintin Mikell (2nd team)OT Jason Peters (2nd team) ← 2009 Eagles seasons 2011 →...

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) أوقست ويل معلومات شخصية الميلاد سنة 1834 [1][2][3][4]  فايمار  الوفاة 24 يناير 1910 (75–76 سنة)[1]  جيرسي سيتي[5]  مواطنة الولايات المت...

 

Theorem for solving simultaneous congruences Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise cop...

Три раздела союза Польши и Литвы на одной карте Третий раздел Речи Посполитой (Третий раздел Польши, пол. III rozbiór Polski) — последний из разделов Речи Посполитой, в результате которого её поделили на три части и она прекратила существование как суверенное государство. Сод�...

 

Jewish community of Iran Jews of Iran redirects here. For the 2005 Dutch documentary, see Jews of Iran (film). Ethnic group Iranian Jewsیهودیان ایرانیיְהוּדִים פַּרְסִים‎Gathering of the Zionist Federation in Iran, 1920Total population300,000–350,000 (est.)Regions with significant populations Israel200,000[1]–250,000[2] United States60,000–80,000[1] Iran9,826[3] Canada1,000 Australia~740[no...

 

San Vicente Localidad Otros nombres: Ciudad de la Quinta de Perón[cita requerida] San VicenteLocalización de San Vicente en Región Metropolitana de Buenos AiresCoordenadas 35°01′29″S 58°25′27″O / -35.0248544, -58.4241138Idioma oficial EspañolEntidad Localidad • País  Argentina • Provincia  Buenos Aires • Partido San VicenteIntendente Nicolás Mantegazza (PJ-FdT)Eventos históricos   • Fundación 1784Altitud  &...

Celtic ethnic group For other uses, see Breton and Briton (disambiguation). Ethnic group BretonsBretons (French)Bretoned or Breizhiz (Breton)Une Jeune Bretonne (A young Breton woman), painting by Roderic O'ConorTotal populationc. 6–8 millionRegions with significant populationsFrance6–7 million    Brittany3,318,904[1][note 1]             Loire-Atlantique1,394,909[2][note 2]&...

 

Pemilihan umum federal Jerman Mei 19241920192404 Mei 1924 (1924-05-04)Seluruh 472 kursi dalam Reichstag237 kursi untuk meraih status mayoritasKehadiran pemilih77.4%Kandidat   Partai pertama Partai kedua Partai ketiga   Ketua Otto Wels Oskar Hergt Constantin Fehrenbach Partai SPD DNVP Tengah Ketua sejak 1919 1919 1923 Pemilu sebelumnya 102 kursi 71 kursi 64 kursi Kursi yang dimenangkan 100 95 65 Perubahan kursi 2 24 1 Suara Popular 6,008,905 5,696,...

 

「勤労者」はこの項目へ転送されています。雑誌については「勤労者 (雑誌)」をご覧ください。 この記事は特に記述がない限り、日本国内の法令について解説しています。また最新の法令改正を反映していない場合があります。ご自身が現実に遭遇した事件については法律関連の専門家にご相談ください。免責事項もお読みください。 19世紀の労働者 労働者(ろうど�...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Basilica and Convent of Nuestra Señora de la Merced – news · newspapers · books · scholar · JSTOR (October 2018)Church in Lima, PeruBasilica y Convento de Nuestra Señora de la MercedFaçadeLocationLimaCountryPeruDenominationRoman CatholicMembershipO...

 

Disambiguazione – Se stai cercando il calciatore e allenatore di calcio, vedi Gaetano Salvemini (calciatore). Gaetano Salvemini Deputato del Regno d'ItaliaDurata mandato1º dicembre 1919 –7 aprile 1921 LegislaturaXXV Sito istituzionale Dati generaliPartito politicoPartito Socialista Italiano Titolo di studioLaurea in Lettere UniversitàUniversità degli Studi di Firenze ProfessioneInsegnante, giornalista pubblicista Gaetano Salvemini (Molfetta, 8 settembre 18...