In the Second World War he worked for the Ministry of Home Security as Gas Advisor 1939 to 1943[5] and the Ministry of Supply 1943 to 1945. He was elected a Fellow of the Royal Society of London in 1945.
In 1947 he became Research Director for the Institute of Brewing. His career was cut short when he was killed in the Goswick rail crash near Berwick-on-Tweed, aged 49.[6]
Gulland played a pivotal role in some of the research which led to the decoding of DNA by Watson and Crick in 1953. The Nottingham team, which included his colleagues Denis Jordan, Cedric Threlfall, and Michael Creeth, produced three papers in 1947: one led to high quality non-degraded DNA samples extracted without using acids or alkalis,[7] the next measured the viscosity of DNA [8] and the third proved the all-important hydrogen bond structures within it.[9]
Five years later Watson dismissed the Nottingham team’s work incorrectly, and it took a year for him to realise his mistake. Eventually however "...a rereading of J. M. Gulland's and D. O. Jordan's papers...made me finally realize the strength of their conclusion that a large fraction, if not all, of the bases formed hydrogen bonds to other bases." Once Watson had recognised the key role of the hydrogen bonds then the decoding of DNA seems to have come within about a week or ten days.[10]
The Nottingham team’s work was also acknowledged in the first papers concerning the decoding of DNA by Rosalind Franklin and Raymond Gosling who reported that "Gulland and his collaborators … showed that … CO and NH2 groups of the bases are inaccessible … whereas the phosphate groups are fully accessible."[11]
Following these early citations rather less attention was given to the significance of the work of Gulland and his colleagues.[12] By the time of the DNA decoding in 1953 events had moved on with the break-up of the Nottingham team: Gulland had moved on to become Research Director at the Institute of Brewing shortly before his untimely death in 1947, whilst Jordan and Creeth were both working outside the UK. However commemorations in 2010 and 2017 at the University of Nottingham posthumously acknowledged all their contributions,[13] as did The Annotated and Illustrated Double Helix (2012).[14]
There has been some speculative debate as to whether, if these events had turned out differently, the Nottingham team might have gone on to make the DNA decoding discovery themselves.[15][16]
Family
In 1924 he married Ruth Madeline Ida Russell, daughter of Sir James A. Russell. She was a fellow chemistry student whom he met in Edinburgh. They had two daughters.[6]
^Gulland JM, Jordan D. O., and Threlfall C. J., (1947) Deoxypentose nucleic acids. Part I. Preparation of the tetrasodium salt of the deoxypentose nucleic acid of calf thymus. J Chem Soc. 1947; 25: 1129–31
^JM Gulland; DO Jordan; HF Taylor; (1947) Deoxypentose nucleic acids; Part II electrometric titration of the acidic and the basic groups of the deoxypentose nucleic acid of calf thymus. J Chem Soc. 1947; 25:1131–41.
^Creeth, J.M., Gulland, J.M. and Jordan, D.O. (1947) Deoxypentose nucleic acids. Part III. Viscosity and streaming birefringence of solutions of the sodium salt of the deoxypentose nucleic acid of calf thymus. J. Chem. Soc. 1947,25 1141–1145
^Watson James D., 1980 The Double Helix Ed. G. Stent Norton New York p.106
^Franklin R.E. & Gosling R.F. Molecular Configuration in Sodium Thymonucleate, Nature, 25 April 1953 pp740-1
^Harding Steve, The forgotten scientist who paved the way for the discovery of DNA’s structure, The Conversation 13 November 2017 retrieved 2017-11-16.
^Watson, James D., 2012 The Annotated and Illustrated Double Helix, Ed. Gann & Witkowski, Simon & Schuster, New York (pp196-7)
^Manchester, K. Did a tragic accident delay the discovery of the double helical structure of DNA? Trends Biochem. Sci. 20: 126-128, 1995). [n.b. Creeth's name is misspelt in the references]
^Coates, J. Denis Oswald Jordan 1914–1982 Historical Records of Australian Science, vol.6, no.2, 1985.