John Bryan Taylor (born 26 December 1928)[1][2] is a British physicist known for his contributions to plasma physics and their application in the field of fusion energy. Notable among these is the development of the "Taylor state", describing a minimum-energy configuration that conserves magnetic helicity.[3][4] Another development was his work on the ballooning transformation, which describes the motion of plasma in toroidal (donut) configurations, which are used in the fusion field.[5][6] Taylor has also made contributions to the theory of the Earth's Dynamo, including the Taylor constraint.[7]
Taylor initiated the study of chaos in magnetic surfaces, developing several contributions to chaos theory and introducing the "standard map" (or Chirikov–Taylor map).[12][13] He studied 2D-plasmas, demonstrating the inherent Bohm diffusion which had been noticed in magnetic bottles since the 1950s.[14][15] He then played a major part in developing the "ballooning transformation" for toroidal plasmas, along with Jack Connor and Jim Hastie, which won him the 2004 Hannes Alfvén Prize.[16]
References
^Hay, Jennifer (26 January 2009). "Eighty years young". ITER. Retrieved 25 January 2024.
^Hart, G. W.; Janos, A.; Meyerhofer, D. D.; Yamada, M. (1986). "Verification of the Taylor (minimum energy) state in a spheromak". The Physics of Fluids. 29 (6): 1994–1997. Bibcode:1986PhFl...29.1994H. doi:10.1063/1.865627. ISSN0031-9171.
^Rechester, A. B.; Rosenbluth, M. N.; White, R. B. (1981). "Fourier-space paths applied to the calculation of diffusion for the Chirikov-Taylor model". Physical Review A. 23 (5): 2664–2672. Bibcode:1981PhRvA..23.2664R. doi:10.1103/PhysRevA.23.2664.
^Lister, Dr Jo (2004). "Award of the 2004 Hannes Alfvén Prize of the European Physical Society to J W Connor, R J Hastie and J B Taylor". Plasma Physics and Controlled Fusion. 46 (12B). doi:10.1088/0741-3335/46/12B/E02. ISSN0741-3335. S2CID250876267.