Jessen's icosahedron

Jessen's icosahedron
Faces
Edges
  • 24 short and convex
  • 6 long and concave
Vertices12
Dihedral angle (degrees)90
Properties
Net

Jessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, is a non-convex polyhedron with the same numbers of vertices, edges, and faces as the regular icosahedron. It is named for Børge Jessen, who studied it in 1967.[1] In 1971, a family of nonconvex polyhedra including this shape was independently discovered and studied by Adrien Douady under the name six-beaked shaddock;[2][3] later authors have applied variants of this name more specifically to Jessen's icosahedron.[4]

The faces of Jessen's icosahedron meet only in right angles, even though it has no orientation where they are all parallel to the coordinate planes. It is a "shaky polyhedron", meaning that (like a flexible polyhedron) it is not infinitesimally rigid. Outlining the edges of this polyhedron with struts and cables produces a widely-used tensegrity structure,[5] also called the six-bar tensegrity,[6] tensegrity icosahedron, or expanded octahedron.[7]

Construction and geometric properties

STL model
View with translucent faces
Distances between selected points

The vertices of Jessen's icosahedron may be chosen to have as their coordinates the twelve triplets given by the cyclic permutations of the coordinates .[1] With this coordinate representation, the short edges of the icosahedron (the ones with convex angles) have length , and the long (reflex) edges have length . The faces of the icosahedron are eight congruent equilateral triangles with the short side length, and twelve congruent obtuse isosceles triangles with one long edge and two short edges.[8]

Jessen's icosahedron is vertex-transitive (or isogonal), meaning that it has symmetries taking any vertex to any other vertex.[9] Its dihedral angles are all right angles. One can use it as the basis for the construction of an infinite family of combinatorially distinct polyhedra with right dihedral angles, formed by gluing copies of Jessen's icosahedron together on their equilateral-triangle faces.[1]

As with the simpler Schönhardt polyhedron, the interior of Jessen's icosahedron cannot be triangulated into tetrahedra without adding new vertices.[10] However, because its dihedral angles are rational multiples of , it has Dehn invariant equal to zero. Therefore, it is scissors-congruent to a cube, meaning that it can be sliced into smaller polyhedral pieces that can be rearranged to form a solid cube.[1]

It is star-shaped, meaning that there is a point in its interior (for instance its center of symmetry) from which all other points are visible. It provides a counterexample to a question of Michel Demazure asking whether star-shaped polyhedra with triangular faces can be made convex by sliding their vertices along rays from this central point. Demazure had connected this question to a point in algebraic geometry by proving that, for star-shaped polyhedra with triangular faces, a certain algebraic variety associated with the polyhedron would be a projective variety if the polyhedron could be made convex in this way. However, Adrien Douady proved that, for a family of shapes that includes Jessen's icosahedron, this sliding motion cannot result in a convex polyhedron.[2][3] Demazure used this result to construct a non-projective smooth rational complete three-dimensional variety.[11]

Structural rigidity

Het Ding [nl], a tensegrity sculpture whose struts and cables form the outline of Jessen's icosahedron, at the University of Twente
Het Ding [nl], a tensegrity sculpture whose struts and cables form the outline of Jessen's icosahedron, at the University of Twente

Jessen's icosahedron is not a flexible polyhedron: if it is constructed with rigid panels for its faces, connected by hinges, it cannot change shape. However, it is also not infinitesimally rigid. This means that there exists a continuous motion of its vertices that, while not actually preserving the edge lengths and face shapes of the polyhedron, does so to a first-order approximation. As a rigid but not infinitesimally rigid polyhedron, it forms an example of a "shaky polyhedron".[5] Because very small changes in its edge lengths can cause much bigger changes in its angles, physical models of the polyhedron seem to be flexible.[4]

Replacing the long concave-dihedral edges of Jessen's icosahedron by rigid struts, and the shorter convex-dihedral edges by cables or wires, produces the tensegrity icosahedron, the structure which has also been called the "six-bar tensegrity"[6] and the "expanded octahedron".[7] As well as in tensegrity sculptures, this structure is "the most ubiquitous form of tensegrity robots", and the "Skwish" children's toy based on this structure was "pervasive in the 1980's".[6] The "super ball bot" concept based on this design has been proposed by the NASA Institute for Advanced Concepts as a way to enclose space exploration devices for safe landings on other planets.[12][13] Anthony Pugh calls this structure "perhaps the best known, and certainly one of the most impressive tensegrity figures".[7]

Jessen's icosahedron is weakly convex, meaning that its vertices are in convex position, and its existence demonstrates that weakly convex polyhedra need not be infinitesimally rigid. However, it has been conjectured that weakly convex polyhedra that can be triangulated must be infinitesimally rigid, and this conjecture has been proven under the additional assumption that the exterior part of the convex hull of the polyhedron can also be triangulated.[14]

Regular icosahedron and its non-convex variant, which differs from Jessen's icosahedron in having different vertex positions and non-right-angled dihedrals

A similar shape can be formed by keeping the vertices of a regular icosahedron in their original positions and replacing certain pairs of equilateral triangles by pairs of isosceles triangles. This shape has also sometimes incorrectly been called Jessen's icosahedron.[15] However, although the resulting polyhedron has the same combinatorial structure and symmetry as Jessen's icosahedron, and looks similar, it does not form a tensegrity structure,[7] and does not have right-angled dihedrals.

Jessen's icosahedron is one of a continuous family of icosahedra with 20 faces, 8 of which are equilateral triangles and 12 of which are isosceles triangles. Each shape in this family is obtained from a regular octahedron by dividing each of its edges in the same proportion and connecting the division points in the pattern of a regular icosahedron. These shapes can be parameterized by the proportion into which the octahedron edges are divided. The convex shapes in this family range from the octahedron itself through the regular icosahedron to the cuboctahedron, with its square faces subdivided into two right triangles in a flat plane. Extending the range of the parameter past the proportion that gives the cuboctahedron produces non-convex shapes, including Jessen's icosahedron. This family was described by H. S. M. Coxeter in 1947.[16] Later, the twisting, expansive-contractive transformations between members of this family, parameterized differently in order to maintain a constant value for one of the two edge lengths, were named jitterbug transformations by Buckminster Fuller.[17]

In 2018, Jessen's icosahedron was generalized by V. A. Gor’kavyi and A. D. Milka [uk] to an infinite family of rigid but not infinitesimally rigid polyhedra. These polyhedra are combinatorially distinct, and have chiral dihedral symmetry groups of arbitrarily large order. However, unlike Jessen's icosahedron, not all of their faces are triangles.[18]

References

  1. ^ a b c d Jessen, Børge (1967). "Orthogonal icosahedra". Nordisk Matematisk Tidskrift. 15 (2): 90–96. JSTOR 24524998. MR 0226494.
  2. ^ a b Berger, Marcel (1987). Geometry. Universitext. Vol. II. Springer-Verlag. p. 47.
  3. ^ a b Douady, A. (1971). "Le shaddock à six becs" (PDF). Bulletin A.P.M.E.P. (in French). 281: 699–701.
  4. ^ a b Gorkavyy, V.; Kalinin, D. (2016). "On model flexibility of the Jessen orthogonal icosahedron". Beiträge zur Algebra und Geometrie. 57 (3): 607–622. doi:10.1007/s13366-016-0287-5. MR 3535071. S2CID 123983129.
  5. ^ a b Goldberg, Michael (1978). "Unstable polyhedral structures". Mathematics Magazine. 51 (3): 165–170. doi:10.2307/2689996. JSTOR 2689996. MR 0498579.
  6. ^ a b c Cera, Angelo Brian Micubo (2020). Design, Control, and Motion Planning of Cable-Driven Flexible Tensegrity Robots (Ph.D. thesis). University of California, Berkeley. p. 5.
  7. ^ a b c d Pugh, Anthony (1976). An Introduction to Tensegrity. University of California Press. pp. 11, 26. ISBN 9780520030558.
  8. ^ Kim, Kyunam; Agogino, Adrian K.; Agogino, Alice M. (June 2020). "Rolling locomotion of cable-driven soft spherical tensegrity robots". Soft Robotics. 7 (3): 346–361. doi:10.1089/soro.2019.0056. PMC 7301328. PMID 32031916.
  9. ^ Grünbaum, Branko (1999). "Acoptic polyhedra" (PDF). Advances in Discrete and Computational Geometry (South Hadley, MA, 1996). Contemporary Mathematics. Vol. 223. Providence, Rhode Island: American Mathematical Society. pp. 163–199. doi:10.1090/conm/223/03137. ISBN 978-0-8218-0674-6. MR 1661382. Archived from the original (PDF) on 2021-03-31. Retrieved 2019-10-16.
  10. ^ Bezdek, Andras; Carrigan, Braxton (2016). "On nontriangulable polyhedra". Beiträge zur Algebra und Geometrie. 57 (1): 51–66. doi:10.1007/s13366-015-0248-4. MR 3457762. S2CID 118484882.
  11. ^ Demazure, Michel (1970). "Sous-groupes algébriques de rang maximum du groupe de Cremona". Annales Scientifiques de l'École Normale Supérieure (in French). 3 (4): 507–588. doi:10.24033/asens.1201. MR 0284446. Archived from the original on 2022-01-19. Retrieved 2022-01-09. See appendix.
  12. ^ Stinson, Liz (February 26, 2014). "NASA's Latest Robot: A Rolling Tangle of Rods That Can Take a Beating". Wired.
  13. ^ Agogino, Adrian; SunSpiral, Vytas; Atkinson, David (June 2013). "Final Report: Super Ball Bot - Structures for Planetary Landing and Exploration for the NASA Innovative Advanced Concepts (NIAC) Program". NASA Ames Research Center.
  14. ^ Izmestiev, Ivan; Schlenker, Jean-Marc (2010). "Infinitesimal rigidity of polyhedra with vertices in convex position". Pacific Journal of Mathematics. 248 (1): 171–190. arXiv:0711.1981. doi:10.2140/pjm.2010.248.171. MR 2734170. S2CID 12145992.
  15. ^ Incorrect descriptions of Jessen's icosahedron as having the same vertex positions as a regular icosahedron include:
  16. ^ Coxeter, H.S.M. (1973). "Section 3.7: Coordinates for the vertices of the regular and quasi-regular solids". Regular Polytopes (3rd ed.). New York: Dover.; 1st ed., Methuen, 1947
  17. ^ Verheyen, H. F. (1989). "The complete set of Jitterbug transformers and the analysis of their motion". Computers and Mathematics with Applications. 17 (1–3): 203–250. doi:10.1016/0898-1221(89)90160-0. MR 0994201.
  18. ^ Gorkavyi, V. A.; Milka, A. D. (2018). "Birosettes are model flexors". Ukrainian Math. J. 70 (7): 1022–1041. doi:10.1007/s11253-018-1549-1. MR 3846095. S2CID 125635225.

Read other articles:

Sir George ElliotFoto Elliot dicetak dengan teknik salt print, akhir 1840anLahir25 September 1813Kolkata, IndiaMeninggal13 Desember 1901London, InggrisPengabdian Britania RayaDinas/cabang Angkatan Laut Britania RayaLama dinas1827–1878PangkatLaksamanaKomandanColumbineHMS VolageHMS EurydiceHMS PhaetonHMS James WattPanglima Tertinggi Portsmouth CommandPenghargaanKnight Commander of the Order of the Bath Laksamana Sir George Augustus Elliot KCB (25 September 1813 – 13 Desember ...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...

 

Culture of Sichuan and nearby parts of China Pattern of the Golden Sun Bird discovered at Jinsha site, a symbol of the Ba–Shu culture and believed to be a totem of the ancient Shu people.[1] It has been designated a symbol for the Chinese culture as a whole by the Chinese government.Ba-Shu culture (Chinese: 巴蜀文化; pinyin: Bāshǔ wénhuà) refers to a regional culture centered around Sichuan province and Chongqing city, also encompassing parts of Yunnan, Guizhou and ...

1st episode of the 4th season of Breaking Bad Box CutterBreaking Bad episodeEpisode no.Season 4Episode 1Directed byAdam BernsteinWritten byVince GilliganCinematography byMichael SlovisEditing bySkip MacdonaldOriginal air dateJuly 17, 2011 (2011-07-17)Running time47 minutesGuest appearances David Costabile as Gale Boetticher Jeremiah Bitsui as Victor Lavell Crawford as Huell Babineaux Tina Parker as Francesca Liddy Episode chronology ← PreviousFull Measure Next ...

 

نادي بينيفيتو الاسم الكامل نادي بينيفيتو لكرة القدم اللقب ستريغوني (Stregoni) تأسس عام 1929؛ منذ 95 سنوات (1929) الملعب استاد سيرو فيغوريتو، بينيفينتو، إيطاليا(السعة: 16,867) البلد  إيطاليا الدوري الدوري الإيطالي الدرجة الثانية 2021-22 2021-22 الإدارة الرئيس أوريست فيغوريتو المدر�...

 

Ethiopian long-distance runner Yemane Tsegay Rotterdam 2012 Medal record Men's athletics Representing  Ethiopia World Championships 2015 Beijing Marathon Yemane Adhane Tsegay (born 8 April 1985)[1] is an Ethiopian long distance runner who specialises in the marathon. He won the 2012 Rotterdam Marathon with a personal best time of 2:04:48 hours. He has also won marathons in Eindhoven, Gyeongju, Macau and Taipei. Career He began competing in international races in 2008 and finished...

Chicagoland Collegiate Athletic ConferenceAssociationNAIAFounded1949CommissionerJeff SchimmelpfennigSports fielded 16 men's: 8 women's: 8 No. of teams12 full + 1 associate (12 full and 0 associate in 2024-25)RegionMidwestern United StatesOfficial websiteccacsports.comLocations The Chicagoland Collegiate Athletic Conference (CCAC) is a college athletic conference affiliated with the National Association of Intercollegiate Athletics (NAIA). Its 12 members are located in the Midwestern United St...

 

Indian ceramics products manufacturing company The Kerala Ceramics LimitedCompany typePublic SectorIndustryManufacturingFounded1963; 61 years ago (1963)HeadquartersKundara, Kollam, IndiaKey people Managing Director:Satees Kumar P Manager(Personnel & Administration):Manoj J ProductsSpray dried KaolinEarthenwareRevenue ₹9.81 crore (US$1.2 million) (2020-21)Websitewww.keralaceramics.com The Kerala Ceramics Limited is a fully owned Government of Kerala ceramics produc...

 

Coppa Italia 1935-1936 Competizione Coppa Italia Sport Calcio Edizione 3ª Organizzatore Direttorio Divisioni Superiori Date dal 14 settembre 1935all'11 giugno 1936 Luogo  Italia Partecipanti 98 Sede finale Genova Risultati Vincitore Torino(1º titolo) Finalista Alessandria Semi-finalisti FiorentinaMilan Statistiche Miglior marcatore Pietro Buscaglia (8) Incontri disputati 102 Gol segnati 370 (3,63 per incontro) La formazione del Torino che si aggiudicò la coppa nazionale...

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

This article may need to be rewritten to comply with Wikipedia's quality standards, as this article should be about the history of humans in the Pacific Islands as a whole. This article should not be split up into small sections for each Pacific Island nation with a brief summary of its history like it is now. You can help. The talk page may contain suggestions. (August 2023) Map of the Pacific Ocean. The history of the Pacific Islands covers the history of the islands in the Pacific Ocean. ...

 

Ponte di GalataIl ponte visto dalla torre di GalataLocalizzazioneStato Turchia CittàIstanbul AttraversaCorno d'Oro Coordinate41°01′12″N 28°58′23″E / 41.02°N 28.973056°E41.02; 28.973056Coordinate: 41°01′12″N 28°58′23″E / 41.02°N 28.973056°E41.02; 28.973056 Dati tecniciTipoponte sollevabile Materialecalcestruzzo Lunghezza490 m Luce max.80 m Larghezza42 m RealizzazioneIng. strutturaleSTFA Group Inaugurazione1994 Mappa di localizzazion...

Chronologies Données clés 1596 1597 1598  1599  1600 1601 1602Décennies :1560 1570 1580  1590  1600 1610 1620Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), (), Littérature () et Musique (Classique)   Ingénierie (), Architecture et ()   Politique Droit et ()   Religion (,)   Science () et ...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يناير 2019) تحتاج هذه المقالة كاملةً أو أجزاءً منها إلى تدقيق لغوي أو نحوي. فضلًا ساهم في تح...

 

Masaharu FukuyamaInformasi latar belakangNama lahirFukuyama Masaharu (福山雅治)Nama lainMasha, Masha-nii, Bike-sanLahir6 Februari 1969 (umur 55)NagasakiAsalNagasaki, Prefektur NagasakiGenreJ-PopPekerjaanPenyanyi, pencipta lagu, aktor, presenter radio, fotografer, bintang iklanInstrumenGitarTahun aktif1990 - sekarangLabelBMG Japan (1990-1999)Universal Music (2000 - sekarang)Situs webMasaharu Fukuyama Portal Jepang Portal Musik Masaharu Fukuyama (福山 雅治code: ja is deprecated , F...

Cet article présente la liste des députés du Pas-de-Calais élus lors des différentes élections législatives françaises. Article connexe : Liste des circonscriptions législatives du Pas-de-Calais. Cinquième République XVIe législature (2022-2027) Liste des députés du Pas-de-Calais lors de la seizième législature Identité Étiquette Autres mandats Première circonscription Emmanuel Blairy RN Deuxième circonscription Jacqueline Maquet RE - Troisième circonscription Jean-M...

 

National highway in Niigata Prefecture, Japan National Route 350国道350号Route informationLength51.9 km[1] (32.2 mi)Major junctionsNorth end National Route 116 in Chūō-ku, NiigataMajor intersections National Route 7 National Route 113 Niigata–Sado Ferry across the Sea of Japan Sado–Jōetsu Ferry across the Sea of Japan South end National Route 8 National Route 18 in Jōetsu LocationCountryJapan Highway system National highways...

 

Маріупольська міська громада громадаОсновні даніКраїна УкраїнаОбластьДонецька областьРайонМаріупольський районКод КАТОТТГUA14140050000020560Утворена12 червня 2020 рокуАдмін. центрМаріупольТериторія та населенняПлоща377,2 км²Населення446 336 осіб (2015)Густота1183,29 осіб/км²Нас�...

У этого термина существуют и другие значения, см. Проточный переулок. Проточный переулок Проточный переулок от пересечения с Новинским бульваром Общая информация Страна Россия Город Москва Округ ЦАО Район Арбат Протяжённость 410 м Метро Смоленская Смоленская Прежние на�...

 

Mathematical transformation reducing the damage caused by aliasing This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (November 2020) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Anti-aliasing filte...