Jackson network

In queueing theory, a discipline within the mathematical theory of probability, a Jackson network (sometimes Jacksonian network[1]) is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research,[2] including ideas used in the development of the Internet.[3] The networks were first identified by James R. Jackson[4][5] and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’[6]

Jackson was inspired by the work of Burke and Reich,[7] though Jean Walrand notes "product-form results … [are] a much less immediate result of the output theorem than Jackson himself appeared to believe in his fundamental paper".[8]

An earlier product-form solution was found by R. R. P. Jackson for tandem queues (a finite chain of queues where each customer must visit each queue in order) and cyclic networks (a loop of queues where each customer must visit each queue in order).[9]

A Jackson network consists of a number of nodes, where each node represents a queue in which the service rate can be both node-dependent (different nodes have different service rates) and state-dependent (service rates change depending on queue lengths). Jobs travel among the nodes following a fixed routing matrix. All jobs at each node belong to a single "class" and jobs follow the same service-time distribution and the same routing mechanism. Consequently, there is no notion of priority in serving the jobs: all jobs at each node are served on a first-come, first-served basis.

Jackson networks where a finite population of jobs travel around a closed network also have a product-form solution described by the Gordon–Newell theorem.[10]

Necessary conditions for a Jackson network

A network of m interconnected queues is known as a Jackson network[11] or Jacksonian network[12] if it meets the following conditions:

  1. if the network is open, any external arrivals to node i form a Poisson process,
  2. All service times are exponentially distributed and the service discipline at all queues is first-come, first-served,
  3. a customer completing service at queue i will either move to some new queue j with probability or leave the system with probability , which, for an open network, is non-zero for some subset of the queues,
  4. the utilization of all of the queues is less than one.

Theorem

In an open Jackson network of m M/M/1 queues where the utilization is less than 1 at every queue, the equilibrium state probability distribution exists and for state is given by the product of the individual queue equilibrium distributions

The result also holds for M/M/c model stations with ci servers at the station, with utilization requirement .

Definition

In an open network, jobs arrive from outside following a Poisson process with rate . Each arrival is independently routed to node j with probability and . Upon service completion at node i, a job may go to another node j with probability or leave the network with probability .

Hence we have the overall arrival rate to node i, , including both external arrivals and internal transitions:

(Since the utilisation at each node is less than 1, and we are looking at the equilibrium distribution i.e. the long-run-average behaviour, the rate of jobs transitioning from j to i is bounded by a fraction of the arrival rate at j and we ignore the service rate in the above.)

Define , then we can solve .

All jobs leave each node also following Poisson process, and define as the service rate of node i when there are jobs at node i.

Let denote the number of jobs at node i at time t, and . Then the equilibrium distribution of , is determined by the following system of balance equations:

where denote the unit vector.

Theorem

Suppose a vector of independent random variables with each having a probability mass function as

where . If i.e. is well defined, then the equilibrium distribution of the open Jackson network has the following product form:

for all .⟩

Proof

It suffices to verify equation is satisfied. By the product form and formula (3), we have:

Substituting these into the right side of we get:

Then use , we have:

Substituting the above into , we have:

This can be verified by . Hence both side of are equal.⟨

This theorem extends the one shown above by allowing state-dependent service rate of each node. It relates the distribution of by a vector of independent variable .

Example

A three-node open Jackson network

Suppose we have a three-node Jackson network shown in the graph, the coefficients are:

Then by the theorem, we can calculate:

According to the definition of , we have:

Hence the probability that there is one job at each node is:

Since the service rate here does not depend on state, the s simply follow a geometric distribution.

Generalized Jackson network

A generalized Jackson network allows renewal arrival processes that need not be Poisson processes, and independent, identically distributed non-exponential service times. In general, this network does not have a product-form stationary distribution, so approximations are sought.[13]

Brownian approximation

Under some mild conditions the queue-length process[clarification needed] of an open generalized Jackson network can be approximated by a reflected Brownian motion defined as , where is the drift of the process, is the covariance matrix, and is the reflection matrix. This is a two-order approximation obtained by relation between general Jackson network with homogeneous fluid network and reflected Brownian motion.

The parameters of the reflected Brownian process is specified as follows:

where the symbols are defined as:

Definitions of symbols in the approximation formula
symbol Meaning
a J-vector specifying the arrival rates to each node.
a J-vector specifying the service rates of each node.
routing matrix.
effective arrival of node.
variation of service time at node.
variation of inter-arrival time at node.
coefficients to specify correlation between nodes.

They are defined in this way: Let be the arrival process of the system, then in distribution, where is a driftless Brownian process with covariate matrix , with , for any

See also

References

  1. ^ Walrand, J.; Varaiya, P. (1980). "Sojourn Times and the Overtaking Condition in Jacksonian Networks". Advances in Applied Probability. 12 (4): 1000–1018. doi:10.2307/1426753. JSTOR 1426753.
  2. ^ Kelly, F. P. (June 1976). "Networks of Queues". Advances in Applied Probability. 8 (2): 416–432. doi:10.2307/1425912. JSTOR 1425912.
  3. ^ Jackson, James R. (December 2004). "Comments on "Jobshop-Like Queueing Systems": The Background". Management Science. 50 (12): 1796–1802. doi:10.1287/mnsc.1040.0268. JSTOR 30046150.
  4. ^ Jackson, James R. (Oct 1963). "Jobshop-like Queueing Systems". Management Science. 10 (1): 131–142. doi:10.1287/mnsc.1040.0268. JSTOR 2627213. A version from January 1963 is available at http://www.dtic.mil/dtic/tr/fulltext/u2/296776.pdf Archived 2018-04-12 at the Wayback Machine
  5. ^ Jackson, J. R. (1957). "Networks of Waiting Lines". Operations Research. 5 (4): 518–521. doi:10.1287/opre.5.4.518. JSTOR 167249.
  6. ^ Jackson, James R. (December 2004). "Jobshop-Like Queueing Systems". Management Science. 50 (12): 1796–1802. doi:10.1287/mnsc.1040.0268. JSTOR 30046149.
  7. ^ Reich, Edgar (September 1957). "Waiting Times When Queues are in Tandem". Annals of Mathematical Statistics. 28 (3): 768. doi:10.1214/aoms/1177706889. JSTOR 2237237.
  8. ^ Walrand, Jean (November 1983). "A Probabilistic Look at Networks of Quasi-Reversible Queues". IEEE Transactions on Information Theory. 29 (6): 825. doi:10.1109/TIT.1983.1056762.
  9. ^ Jackson, R. R. P. (1995). "Book review: Queueing networks and product forms: a systems approach". IMA Journal of Management Mathematics. 6 (4): 382–384. doi:10.1093/imaman/6.4.382.
  10. ^ Gordon, W. J.; Newell, G. F. (1967). "Closed Queuing Systems with Exponential Servers". Operations Research. 15 (2): 254. doi:10.1287/opre.15.2.254. JSTOR 168557.
  11. ^ Goodman, Jonathan B.; Massey, William A. (December 1984). "The Non-Ergodic Jackson Network". Journal of Applied Probability. 21 (4): 860–869. doi:10.2307/3213702.
  12. ^ Walrand, J.; Varaiya, P. (December 1980). "Sojourn Times and the Overtaking Condition in Jacksonian Networks". Advances in Applied Probability. 12 (4): 1000–1018. doi:10.2307/1426753.
  13. ^ Chen, Hong; Yao, David D. (2001). Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization. Springer. ISBN 0-387-95166-0.

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Fotoresis – berita · surat kabar · buku · cendekiawan · JSTOR SEM image of a photoresist layer used in semiconductor manufacturing taken on a field electron emission SEM. These SEMs are important in the ...

 

Masjid Yavuz SelimYavuz Selim CamiiAgamaAfiliasiIslam – SunniProvinsiIstanbulLokasiLokasiFatihNegara TurkiArsitekturArsitekAlaüddinTipeMasjidGaya arsitekturTurki dengan sedikit sentuhan arsitektur UtsmaniyahDidirikan1522SpesifikasiKubah1Menara2 Masjid Yavuz Selim (bahasa Turki: Yavuz Selim Camii) atau lebih dikenal dengan Masjid Sultan Selim (bahasa Turki: Sultan Selim Camii) atau Masjid Selim I (bahasa Turki: Selim I Camii) adalah sebuah masjid yang berada di distrik Fatih, Provinsi ...

 

Artikel ini bukan mengenai Kroscek. Cross Check!GenreKomediPemeranDenny CagurNunungAngel KaramoyWika SalimDustin TiffaniNegara asalIndonesiaBahasa asliBahasa IndonesiaProduksiDurasi60 menit (Sabtu)Rilis asliJaringaniNewsFormat gambar1080i HDTVFormat audioStereoRilis17 Januari 2022 (2022-01-17) –sekarangAcara terkaitLapor Pak! dan Anak Sekolah (di Trans7)Kejar Tayang dan Klinik Tendean (di Trans TV)OB (Office Boy) (di RCTI)The East, Berita dalam Dunia dan Drama Queen (di NET.) Cros...

Austrian harpist (1823-1856) Melanie LewyLithograph of Melanie Lewy by Leopold Müller (1840)Born(1823-07-27)27 July 1823ViennaDied6 April 1856(1856-04-06) (aged 32)NationalityAustrianOccupationharpist Melanie Lewy (27 July 1823[1] – 6 April 1856) was an Austrian harpist of Jewish birth. Early life Melanie Lewy was born in 1823 in Vienna, the daughter of Eduard Constantin Lewy and his wife Johanna, née Weller.[2] Eduard Lewy (born Elie Lewy) was the son of a musician ...

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan ...

 

ColenakColenak yang dihidangkan di atas sebuah piring yang siap disantap dengan menggunakan garpu.Tempat asalIndonesiaDibuat olehSuku SundaSunting kotak info • L • BBantuan penggunaan templat ini Colenak atau dikenal juga dengan beuleum peuyeum (Aksara Sunda Baku: ᮎᮧᮜᮦᮔᮊ᮪, Colénak, akronim dari dicocol énak 'dicelupkan sedap') adalah nama yang diberikan pada kudapan khas Sunda yang dibuat dari peuyeum (tapai singkong) yang dibakar dan disantap dengan dicocolkan p...

Немецкий язык является одним из наиболее часто используемых языков в мире, занимая среди всех языков десятое место по популярности[1]. Также он является одним из наиболее распространённых языков: на немецком говорит более 100 млн человек во всём мире[2]. При этом ну�...

 

Mathematical model of how solid objects deform This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2010) (Learn how and when to remove this template message) Part of a series onContinuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion Laws Conservations Mass Momentum Energy Inequalities Clausi...

 

Overview of humans' uses of birds Detail of two falconers from the Medieval De arte venandi cum avibus, c. 1240 Human uses of birds have, for thousands of years, included both economic uses such as food, and symbolic uses such as art, music, and religion. In terms of economic uses, birds have been hunted for food since Palaeolithic times. They have been captured and bred as poultry to provide meat and eggs since at least the time of ancient Egypt. Some species have been used, too, to he...

Place in South AustraliaFides BluffSouth AustraliaFides BluffCoordinates35°41′49″S 136°50′18″E / 35.69694°S 136.83833°E / -35.69694; 136.83833Location70 km (43 mi) west of Kingscote Fides Bluff is a headland in the Australian state of South Australia located on the north coast of Kangaroo Island in the gazetted locality of De Mole River about 70 kilometres (43 miles) west of the municipal seat of Kingscote.[1] It was named by the Governme...

 

Tiered streets 360 North Michigan, Mather Tower and 35 East Wacker stand on East Wacker Drive just west of Michigan Avenue and the Michigan Avenue Bridge. Downtown Chicago, Illinois, has some double-decked and a few triple-decked streets immediately north and south of the Main Branch and immediately east of the South Branch of the Chicago River. The most famous and longest of these is Wacker Drive, which replaced the South Water Street Market upon its 1926 completion.[1] The resulting...

 

American actress (born 1961) Nancy TravisTravis in 2012BornNancy Ann Travis (1961-09-21) September 21, 1961 (age 62)[1]New York City, U.S.EducationNew York UniversityAlma materCircle in the Square Theatre SchoolOccupationsActressproducerYears active1985–presentKnown for Chris Connor - Becker Vanessa Baxter - Last Man Standing Spouse Robert N. Fried ​(m. 1994)​Children2 Nancy Ann Travis (born September 21, 1961) is an American actress....

Questa voce o sezione sull'argomento centri abitati della Liguria non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: Alcune sezioni prive di fonti Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Cosseriacomune Cosseria – VedutaLa chiesa parrocchiale dell'Immacolata Concezione nel capoluogo LocalizzazioneStato Italia Regione Liguria Provincia Savona AmministrazioneSindacoRoberto M...

 

Stasiun Orikasa織笠駅Stasiun Orikasa pada Juni 2019LokasiOrikasa, Yamada, Shimohei, Iwate(岩手県閉伊郡山田町織笠)JepangOperatorSanriku RailwayJalur■ Jalur RiasLetak64.3 km dari SakariSejarahDibuka1935Sunting kotak info • L • BBantuan penggunaan templat ini Stasiun Orikasa (織笠駅code: ja is deprecated , Orikasa-eki) adalah sebuah stasiun kereta api Sanriku Railway Company yang terletak di Yamada, Prefektur Iwate, Jepang. Jalur Stasiun Orikasa dilayani oleh...

 

2016 American filmMichael Moore in TrumpLandDirected byMichael MooreWritten byMichael MooreProduced byMichael MooreStarringMichael MooreCinematographyJim ZuntEdited byDoug AbelProductioncompanies Dog Eat Dog Films IMG Films Release date October 18, 2016 (2016-10-18) (IFC Center) Running time73 minutes[1]CountryUnited StatesLanguageEnglishBox office$149,090[2] Michael Moore in TrumpLand is a 2016 documentary film by Michael Moore[3][4][5&#...

此條目可参照英語維基百科和西班牙語維基百科相應條目来扩充。若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。亞松森Asunción首都Nuestra Señora Santa María de la Asunción亞松森坐标:25°18′00″S 57°38′00″W / ...

 

Publishing keiretsu This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2013) (Learn how and when to remove this message) Hitotsubashi GroupThe exteriors of Shogakukan and Shueisha's main headquarters in Chiyoda, Tokyo, JapanNative name一ツ橋グループRomanized nameHitotsubashi GurūpuCompany typePrivateFounderTakeo ŌgaHeadquartersTokyo, JapanArea s...

 

Disambiguazione – Pacifico rimanda qui. Se stai cercando altri significati, vedi Pacifico (disambigua). Questa voce o sezione sull'argomento geografia è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti...

Disambiguazione – Se stai cercando altri significati, vedi Newark (disambigua). Newarkcity(EN) City of Newark Newark – Veduta LocalizzazioneStato Stati Uniti Stato federato New Jersey ConteaEssex AmministrazioneSindacoRas J. Baraka (D) dal 31-10-2013 TerritorioCoordinate40°44′08″N 74°10′20″W40°44′08″N, 74°10′20″W (Newark) Altitudine3 m s.l.m. Superficie61,60 km² Abitanti311 549 (2020) Densità5 057,61 ab./km² Altre inf...

 

Questa voce o sezione sull'argomento centri abitati della Spagna non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Llardecanscomune Llardecans – Veduta LocalizzazioneStato Spagna Comunità autonoma Catalogna Provincia Lleida AmministrazioneAlcaldeJosep Pardell dal 2007 TerritorioCoord...