Solymosi earned his master's degree in 1999 under the supervision of László Székely from the Eötvös Loránd University[2] and his Ph.D. in 2001 at ETH Zürich under the supervision of Emo Welzl. His doctoral dissertation was Ramsey-Type Results on Planar Geometric Objects.[3]
One of his theorems states that if a finite set of points in the Euclidean plane has every pair of points at an integer distance from each other, then
the set must have a diameter (largest distance) that is linear in the number of points. This result is connected to the Erdős–Anning theorem, according to which an infinite set of points with integer distances must lie on one line.[6][ID] In connection with the related Erdős–Ulam problem, on the existence of dense subsets of the plane for which all distances are rational numbers, Solymosi and de Zeeuw proved that every infinite rational-distance set must either be dense in the Zariski topology or it must have all but finitely many of its points on a single line or circle.[7][EU]
With Terence Tao, Solymosi proved a bound of on the number of incidences between points and affine subspaces of any finite-dimensional Euclidean space, whenever each pair of subspaces has at most one point of intersection. This generalizes the Szemerédi–Trotter theorem on points and lines in the Euclidean plane, and because of this the exponent of cannot be improved. Their theorem solves (up to the in the exponent) a conjecture of Toth, and was inspired by an analogue of the Szemerédi–Trotter theorem for lines in the complex plane.[8][9][HD]
He has also contributed improved bounds for the Erdős–Szemerédi theorem, showing that every set of real numbers has either a large set of pairwise sums or a large set of pairwise products,[10][ME] and for the Erdős distinct distances problem, showing that every set of points in the plane has many different pairwise distances.[11][DD]