I. A. Panin proved (together with A. L. Smirnov) theorems of the Riemann-Roch type for oriented cohomology theories[6] and Riemann-Roch type theorems for the Adams operation. Panin found a proof of Gersten's conjecture in the case of equal characteristic and an affirmative solution (jointly with Manuel Ojanguren) of the "purity" problem for quadratic forms.[4]
Panin computed the algebraic K-groups of all twisted forms of flag varieties and all principal homogeneous spaces over the inner forms of semisimple algebraic groups. He, jointly with A. S. Merkurjev and A. R. Wadsworth, generalized, to arbitrary Borel varieties, results proved by David Tao[7] concerning index reduction formulas for the function fields of involution varieties.[8][4][9]
Selected publications
Panin I. A. (1994). "On the algebraic K-theory of twisted flag varieties". K-Theory. 8 (6): 541–585. doi:10.1007/BF00961020.
Merkurjev A. S., Panin I. A., Wadsworth A. R. (1996). "Index reduction formulas for twisted flag varieties". K-Theory. 10 (6): 517–596. doi:10.1007/BF00537543.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Panin, Ivan (2018). "On Grothendieck-Serre conjecture concerning principal bundles". In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures. pp. 201–221. doi:10.1142/9789813272880_0051. ISBN978-981-327-287-3. S2CID203101257.