Itô's lemma

In mathematics, Itô's lemma or Itô's formula (also called the Itô–Doeblin formula, especially in the French literature) is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values.

Kiyoshi Itô published a proof of the formula in 1951.[1]

Motivation

Suppose we are given the stochastic differential equation where Bt is a Wiener process and the functions are deterministic (not stochastic) functions of time. In general, it's not possible to write a solution directly in terms of However, we can formally write an integral solution

This expression lets us easily read off the mean and variance of (which has no higher moments). First, notice that every individually has mean 0, so the expected value of is simply the integral of the drift function:

Similarly, because the terms have variance 1 and no correlation with one another, the variance of is simply the integral of the variance of each infinitesimal step in the random walk:

However, sometimes we are faced with a stochastic differential equation for a more complex process in which the process appears on both sides of the differential equation. That is, say for some functions and In this case, we cannot immediately write a formal solution as we did for the simpler case above. Instead, we hope to write the process as a function of a simpler process taking the form above. That is, we want to identify three functions and such that and In practice, Ito's lemma is used in order to find this transformation. Finally, once we have transformed the problem into the simpler type of problem, we can determine the mean and higher moments of the process.

Derivation

We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus.

Suppose is an Itô drift-diffusion process that satisfies the stochastic differential equation

where Bt is a Wiener process.

If f(t,x) is a twice-differentiable scalar function, its expansion in a Taylor series is

Then use the total derivative and the definition of the partial derivative :

Substituting and therefore , we get

In the limit , the terms and tend to zero faster than . is (due to the quadratic variation of a Wiener process which says ), so setting and terms to zero and substituting for , and then collecting the terms, we obtain

as required.

Alternatively,

Geometric intuition

When is a Gaussian random variable, is also approximately Gaussian random variable, but its mean differs from by a factor proportional to and the variance of .

Suppose we know that are two jointly-Gaussian distributed random variables, and is nonlinear but has continuous second derivative, then in general, neither of is Gaussian, and their joint distribution is also not Gaussian. However, since is Gaussian, we might still find is Gaussian. This is not true when is finite, but when becomes infinitesimal, this becomes true.

The key idea is that has a deterministic part and a noisy part. When is nonlinear, the noisy part has a deterministic contribution. If is convex, then the deterministic contribution is positive (by Jensen's inequality).

To find out how large the contribution is, we write , where is a standard Gaussian, then perform Taylor expansion. We have split it into two parts, a deterministic part, and a random part with mean zero. The random part is non-Gaussian, but the non-Gaussian parts decay faster than the Gaussian part, and at the limit, only the Gaussian part remains. The deterministic part has the expected , but also a part contributed by the convexity: .

To understand why there should be a contribution due to convexity, consider the simplest case of geometric Brownian walk (of the stock market): . In other words, . Let , then , and is a Brownian walk. However, although the expectation of remains constant, the expectation of grows. Intuitively it is because the downside is limited at zero, but the upside is unlimited. That is, while is normally distributed, is log-normally distributed.

Mathematical formulation of Itô's lemma

In the following subsections we discuss versions of Itô's lemma for different types of stochastic processes.

Itô drift-diffusion processes (due to: Kunita–Watanabe)

In its simplest form, Itô's lemma states the following: for an Itô drift-diffusion process

and any twice differentiable scalar function f(t,x) of two real variables t and x, one has

This immediately implies that f(t,Xt) is itself an Itô drift-diffusion process.

In higher dimensions, if is a vector of Itô processes such that

for a vector and matrix , Itô's lemma then states that

where is the gradient of f w.r.t. X, HX f is the Hessian matrix of f w.r.t. X, and Tr is the trace operator.

Poisson jump processes

We may also define functions on discontinuous stochastic processes.

Let h be the jump intensity. The Poisson process model for jumps is that the probability of one jump in the interval [t, t + Δt] is hΔt plus higher order terms. h could be a constant, a deterministic function of time, or a stochastic process. The survival probability ps(t) is the probability that no jump has occurred in the interval [0, t]. The change in the survival probability is

So

Let S(t) be a discontinuous stochastic process. Write for the value of S as we approach t from the left. Write for the non-infinitesimal change in S(t) as a result of a jump. Then

Let z be the magnitude of the jump and let be the distribution of z. The expected magnitude of the jump is

Define , a compensated process and martingale, as

Then

Consider a function of the jump process dS(t). If S(t) jumps by Δs then g(t) jumps by Δg. Δg is drawn from distribution which may depend on , dg and . The jump part of is

If contains drift, diffusion and jump parts, then Itô's Lemma for is

Itô's lemma for a process which is the sum of a drift-diffusion process and a jump process is just the sum of the Itô's lemma for the individual parts.

Non-continuous semimartingales

Itô's lemma can also be applied to general d-dimensional semimartingales, which need not be continuous. In general, a semimartingale is a càdlàg process, and an additional term needs to be added to the formula to ensure that the jumps of the process are correctly given by Itô's lemma. For any cadlag process Yt, the left limit in t is denoted by Yt−, which is a left-continuous process. The jumps are written as ΔYt = YtYt−. Then, Itô's lemma states that if X = (X1, X2, ..., Xd) is a d-dimensional semimartingale and f is a twice continuously differentiable real valued function on Rd then f(X) is a semimartingale, and

This differs from the formula for continuous semi-martingales by the additional term summing over the jumps of X, which ensures that the jump of the right hand side at time t is Δf(Xt).

Multiple non-continuous jump processes

[citation needed]There is also a version of this for a twice-continuously differentiable in space once in time function f evaluated at (potentially different) non-continuous semi-martingales which may be written as follows:

where denotes the continuous part of the ith semi-martingale.

Examples

Geometric Brownian motion

A process S is said to follow a geometric Brownian motion with constant volatility σ and constant drift μ if it satisfies the stochastic differential equation , for a Brownian motion B. Applying Itô's lemma with gives

It follows that

exponentiating gives the expression for S,

The correction term of σ2/2 corresponds to the difference between the median and mean of the log-normal distribution, or equivalently for this distribution, the geometric mean and arithmetic mean, with the median (geometric mean) being lower. This is due to the AM–GM inequality, and corresponds to the logarithm being concave (or convex upwards), so the correction term can accordingly be interpreted as a convexity correction. This is an infinitesimal version of the fact that the annualized return is less than the average return, with the difference proportional to the variance. See geometric moments of the log-normal distribution[broken anchor] for further discussion.

The same factor of σ2/2 appears in the d1 and d2 auxiliary variables of the Black–Scholes formula, and can be interpreted as a consequence of Itô's lemma.

Doléans-Dade exponential

The Doléans-Dade exponential (or stochastic exponential) of a continuous semimartingale X can be defined as the solution to the SDE dY = Y dX with initial condition Y0 = 1. It is sometimes denoted by Ɛ(X). Applying Itô's lemma with f(Y) = log(Y) gives

Exponentiating gives the solution

Black–Scholes formula

Itô's lemma can be used to derive the Black–Scholes equation for an option.[2] Suppose a stock price follows a geometric Brownian motion given by the stochastic differential equation dS = S(σdB + μ dt). Then, if the value of an option at time t is f(t, St), Itô's lemma gives

The term f/S dS represents the change in value in time dt of the trading strategy consisting of holding an amount f/S of the stock. If this trading strategy is followed, and any cash held is assumed to grow at the risk free rate r, then the total value V of this portfolio satisfies the SDE

This strategy replicates the option if V = f(t,S). Combining these equations gives the celebrated Black–Scholes equation

Product rule for Itô processes

Let be a two-dimensional Ito process with SDE:

Then we can use the multi-dimensional form of Ito's lemma to find an expression for .

We have and .

We set and observe that and

Substituting these values in the multi-dimensional version of the lemma gives us:

This is a generalisation of Leibniz's product rule to Ito processes, which are non-differentiable.

Further, using the second form of the multidimensional version above gives us

so we see that the product is itself an Itô drift-diffusion process.

Itô's formula for functions with finite quadratic variation

An idea by Hans Föllmer was to extend Itô's formula to functions with finite quadratic variation.[3]

Let be a real-valued function and a RCLL function with finite quadratic variation. Then

Infinite-dimensional formulas

There exist a couple of extensions to infinite-dimensional spaces (e.g. Pardoux,[4] Gyöngy-Krylov,[5] Brzezniak-van Neerven-Veraar-Weis[6]).

See also

Notes

  1. ^ Itô, Kiyoshi (1951). "On a formula concerning stochastic differentials". Nagoya Math. J. 3: 55–65. doi:10.1017/S0027763000012216.
  2. ^ Malliaris, A. G. (1982). Stochastic Methods in Economics and Finance. New York: North-Holland. pp. 220–223. ISBN 0-444-86201-3.
  3. ^ Föllmer, Hans (1981). "Calcul d'Ito sans probabilités". Séminaire de probabilités de Strasbourg. 15: 143–144.
  4. ^ Pardoux, Étienne (1974). "Équations aux dérivées partielles stochastiques de type monotone". Séminaire Jean Leray (3).
  5. ^ Gyöngy, István; Krylov, Nikolay Vladim Vladimirovich (1981). "Ito formula in banach spaces". In M. Arató; D. Vermes, D.; A.V. Balakrishnan (eds.). Stochastic Differential Systems. Lecture Notes in Control and Information Sciences. Vol. 36. Springer, Berlin, Heidelberg. pp. 69–73. doi:10.1007/BFb0006409. ISBN 3-540-11038-0.
  6. ^ Brzezniak, Zdzislaw; van Neerven, Jan M. A. M.; Veraar, Mark C.; Weis, Lutz (2008). "Ito's formula in UMD Banach spaces and regularity of solutions of the Zakai equation". Journal of Differential Equations. 245 (1): 30–58. arXiv:0804.0302. doi:10.1016/j.jde.2008.03.026.

References

  • Kiyosi Itô (1944). Stochastic Integral. Proc. Imperial Acad. Tokyo 20, 519–524. This is the paper with the Ito Formula; Online
  • Kiyosi Itô (1951). On stochastic differential equations. Memoirs, American Mathematical Society 4, 1–51. Online
  • Bernt Øksendal (2000). Stochastic Differential Equations. An Introduction with Applications, 5th edition, corrected 2nd printing. Springer. ISBN 3-540-63720-6. Sections 4.1 and 4.2.
  • Philip E Protter (2005). Stochastic Integration and Differential Equations, 2nd edition. Springer. ISBN 3-662-10061-4. Section 2.7.

Read other articles:

Gruppo di chimici al lavoro nei laboratori della Universidad de La Rioja in Spagna. Uno scienziato è una persona esperta in un determinato campo della scienza e che usa abitualmente metodi scientifici nell'effettuare ricerche scientifiche (i cui risultati vengono tipicamente pubblicati su apposite riviste scientifiche dopo attenta validazione da parte di specialisti del settore[1]), destinate all'incremento della conoscenza scientifica nello specifico settore di competenza. Indice 1 ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. Ali Sukri (lahir 28 Oktober 1978) adalah seniman berkebangsaan Indonesia. Namanya dikenal melalui karya-karyanya berupa koreografi tari yang dipertunjukkan di berbagai tempat dan festival di Indonesia. Atas prestasinya, dia menerima beberapa penghargaan. A...

 

Chronologies Données clés 1907 1908 1909  1910  1911 1912 1913Décennies :1880 1890 1900  1910  1920 1930 1940Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

Tertiapin is a 21-amino acid peptide isolated from venom of the European honey bee (Apis mellifera). It blocks two different types of potassium channels, inward rectifier potassium channels (Kir) and calcium activated large conductance potassium channels (BK). Tertiapin peptide Sources Tertiapin is a peptidic component of the venom of the European honey bee (Apis mellifera).[1] Chemistry Tertiapin peptide is composed of 21 amino acids with the sequence: Ala-Leu-Cys-Asn-Cys-Asn-Arg-Ile...

 

MaasdonkBekas munisipalitas BenderaLambang kebesaranNegaraBelandaProvinsiBrabant UtaraLuas(2006) • Total37,32 km2 (1,441 sq mi) • Luas daratan37,23 km2 (1,437 sq mi) • Luas perairan0,09 km2 (3 sq mi)Populasi (1 Januari 2007) • Total11.282 • Kepadatan303/km2 (780/sq mi) Sumber: CBS, Statline.Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST) Maasdonk, adalah se...

 

This is a list of religious buildings in Paris, organized by religion and then by arrondissement (administrative division or district). This list is incomplete; you can help by adding missing items. (April 2011) A map of the churches founded in Paris from AD 500 to AD 1790 Buddhism 12th arrondissement: Pagode de Vincennes, in the Bois de Vincennes 13th arrondissement: Two pagodas in the Asian quarter Christianity Anglican Communion American Cathedral in Paris American Cathedral in Paris, 8th...

У этого термина существуют и другие значения, см. Чайки (значения). Чайки Доминиканская чайкаЗападная чайкаКалифорнийская чайкаМорская чайка Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вторич...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

Elena FavilliElena FavilliLahir03 Agustus 1982 (umur 41)Montevarchi, Toscana, ItaliaAlmamaterUniversitas Bologna, Universitas California, BerkeleyPekerjaanCEO dan Pendiri Rebel GirlsDikenal atasPengarang dan pembuat Good Night Stories for Rebel Girls Elena Favilli (lahir 3 Agustus 1982 di Montevarchi, Toscana, Italia) adalah seorang pengarang berpenjualan terbaik, jurubicara, wirausahawati dan pemimpin feminis liberal. Elena Favilli adalah pendiri dan CEO perusahaan media digital Rebel ...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

Infantry regiment of the Pakistan Army The Baloch RegimentFounded1798Country Company Rule 1798–1858 British India 1858–1947  Pakistan 1947–presentBranch British Indian Army Pakistan ArmyRoleInfantrySize60 battalionsRegimental centreAbbottabadMotto(s)Ghazi ya Shaheed (Victorious or Martyr)War cryKai KaiUniformRifle Green; faced cherryEngagements Second Polygar War Second Maratha War Travancore War Third Maratha War Third Kandy War First Burma War Naning War Coorg War Exped...

 

LASA-60 / AL-60 / C4M Kudu Aermacchi AL-60A1 Jenis Pesawat multifungsi Pembuat Lockheed-AzcarateAermacchiAtlas Aircraft Corporation Perancang Al Mooney Penerbangan perdana 15 September 1959[1] Pengguna utama Angkatan Udara MeksikoAngkatan Udara Afrika Selatan Lockheed-Azcárate LASA-60. Aermacchi AL-60 adalah sebuah pesawat ringan multifungsi pada akhir 1950an dan awal 1960an, yang awalnya dirancang oleh Al Mooney untuk Lockheed di Amerika Serikat. Setelah perusahaan memutuskan ...

فيزياء الجوامدصنف فرعي من فيزياء جزء من فيزياء الموضوع صلب تعديل - تعديل مصدري - تعديل ويكي بيانات فيزياء الجوامد أو فيزياء الحالة الصلبة (بالإنجليزية: Solid-state physics)‏ هو أكبر فروع علم فيزياء المواد المكثفة.[1][2][3] وهو علم يهتم بدراسة المواد الجامدة، والمواد الصلبة...

 

Wahana antariksa ShenzhouDiagram wahana antariksa setelah Shenzhou 7Negara asalTiongkokOperatorCNSAAplikasiWahana antariksa berawak SpesifikasiUsia pakai20 hari [butuh rujukan]Massa luncur7840 kgDimensi9.25 x 2.8 mVolume14.00 m3RegimeBumi rendah DimensionsProduksiStatusBeroperasiSelesai dibuat13Diluncurkan13Operasional0Pensiun13Gagal0Peluncuran pertamaShenzhou 1, 19 November 1999Peluncuran terkiniShenzhou 13, 15 Oktober 2021 Wahana antariksa terkaitPendahuluSoyuz Shenzhou (/ˈʃɛnˈd...

 

Robert DouglasDouglas dalam Buccaneer's Girl (1950)LahirRobert Douglas Finlayson(1909-11-09)9 November 1909Fenny Stratford, Buckinghamshire, InggrisMeninggal11 Januari 1999(1999-01-11) (umur 89)Encinitas, California, Amerika SerikatPekerjaanAktor, Sutradara, produserTahun aktif1927–1982Suami/istriDorothy Hyson ​ ​(m. 1935; c. 1945)​ Suzanne Weldon ​ ​(m. 1946; meninggal 1995)​Anak2 ...

Coordination complex of a metal and cyclopentadienyl groups Zirconocene dichloride, a cyclopentadienyl complex A cyclopentadienyl complex is a coordination complex of a metal and cyclopentadienyl groups (C5H−5, abbreviated as Cp−). Cyclopentadienyl ligands almost invariably bind to metals as a pentahapto (η5-) bonding mode. The metal–cyclopentadienyl interaction is typically drawn as a single line from the metal center to the center of the Cp ring.[1][2] Examples Biscyc...

 

Musashi MiyamotoSampul DVD Criterion Collection.SutradaraHiroshi InagakiProduserKazuo TakimuraDitulis olehHideji Hōjō (permainan panggung)Hiroshi InagakiTokuhei WakaoEiji Yoshikawa (novel)PemeranToshiro MifuneRentarō MikuniPenata musikIkuma DanPerusahaanproduksiToho StudiosDistributorToho StudiosTanggal rilis 26 September 1954 (1954-09-26) (Japan) 18 November 1955 (1955-11-18) (US) Durasi93 menitNegaraJepangBahasaJepang Miyamoto Musashi (宮本武蔵code: ja is depr...

 

Irish football manager (born 1958) For the archer, see Chris Haughton. For the television personality formerly known as Kris Houghton, see Kris Jenner. Chris Hughton Hughton with Brighton & Hove Albion in 2015Personal informationFull name Christopher William Gerard Hughton[1]Date of birth (1958-12-11) 11 December 1958 (age 65)[1]Place of birth Forest Gate, Essex, EnglandHeight 5 ft 7 in (1.70 m)[2]Position(s) Full-backSenior career*Years Team Ap...

First human spaceflight mission of the Chinese space program Shenzhou 5Shenzhou-5 spacecraft mockup and parachute displayed at the National Museum of China.OperatorCMSACOSPAR ID2003-045A SATCAT no.28043Mission duration21 hours, 22 minutes, 45 secondsOrbits completed14 Spacecraft propertiesSpacecraft typeShenzhouLaunch mass7,790 kilograms (17,170 lb) CrewCrew size1MembersYang Liwei Start of missionLaunch date15 October 2003, 01:00:03 (2003-10-15UTC01:00:03Z) UTCRo...

 

Magnesium- and iron-rich extrusive igneous rock For other uses, see Basalt (disambiguation). BasaltIgneous rockCompositionPrimaryMafic: plagioclase, amphibole, and pyroxeneSecondarySometimes feldspathoids or olivine Basalt (UK: /ˈbæsɔːlt, -əlt/;[1] US: /bəˈsɔːlt, ˈbeɪsɔːlt/)[2] is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a ro...