Isotopes of boron
Boron (5 B) naturally occurs as isotopes 10 B and 11 B , the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives , the longest being that of 8 B , with a half-life of only 771.9(9) ms and 12 B with a half-life of 20.20(2) ms . All other isotopes have half-lives shorter than 17.35 ms . Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for 7 B and 9 B ) while those with mass above 11 mostly become carbon .
A chart showing the abundances of the naturally occurring isotopes of boron.
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ 3] [ n 2] [ n 3]
Half-life [ 4] [resonance width ]
Decay mode [ 4] [ n 4]
Daughter isotope [ n 5]
Spin andparity [ 4] [ n 6] [ n 7]
Natural abundance (mole fraction)
Excitation energy
Normal proportion[ 4]
Range of variation
6 B ?[ n 8]
5
1
6.050800 (2150)
p-unstable
2p ?
4 Li ?
2−#
7 B
5
2
7.029712 (27)
570(14) ys [ 801(20) keV ]
p
6 Be[ n 9]
(3/2−)
8 B[ n 10] [ n 11]
5
3
8.0246073 (11)
771.9(9) ms
β+ α
4 He
2+
8m B
10624 (8) keV
0+
9 B
5
4
9.0133296 (10)
800(300) zs
p
8 Be[ n 12]
3/2−
10 B[ n 13]
5
5
10.012936 862 (16)
Stable
3+
[ 0.189 , 0.204 ][ 5]
11 B
5
6
11.009305 167 (13)
Stable
3/2−
[ 0.796 , 0.811 ][ 5]
11m B
12560 (9) keV
1/2+, (3/2+)
12 B
5
7
12.0143526 (14)
20.20(2) ms
β− ( 99.40(2)% )
12 C
1+
β− α ( 0.60(2)% )
8 Be[ n 14]
13 B
5
8
13.0177800 (11)
17.16(18) ms
β− ( 99.734(36)% )
13 C
3/2−
β− n ( 0.266(36)% )
12 C
14 B
5
9
14.025404 (23)
12.36(29) ms
β− ( 93.96(23)% )
14 C
2−
β− n ( 6.04(23)% )
13 C
β− 2n ?[ n 15]
12 C ?
14m B
17065 (29) keV
4.15(1.90) zs
IT ?[ n 15]
0+
15 B
5
10
15.031087 (23)
10.18(35) ms
β− n ( 98.7(1.0)% )
14 C
3/2−
β− (< 1.3% )
15 C
β− 2n (< 1.5% )
13 C
16 B
5
11
16.039841 (26)
> 4.6 zs
n ?[ n 15]
15 B ?
0−
17 B[ n 16]
5
12
17.04693 (22)
5.08(5) ms
β− n ( 63(1)% )
16 C
(3/2−)
β− ( 21.1(2.4)% )
17 C
β− 2n ( 12(2)% )
15 C
β− 3n ( 3.5(7)% )
14 C
β− 4n ( 0.4(3)% )
13 C
18 B
5
13
18.05560 (22)
< 26 ns
n
17 B
(2−)
19 B[ n 16]
5
14
19.06417 (56)
2.92(13) ms
β− n ( 71(9)% )
18 C
(3/2−)
β− 2n ( 17(5)% )
17 C
β− 3n (< 9.1% )
16 C
β− (> 2.9% )
19 C
20 B[ 6]
5
15
20.07451 (59)
> 912.4 ys
n
19 B
(1−, 2−)
21 B[ 6]
5
16
21.08415 (60)
> 760 ys
2n
19 B
(3/2−)
This table header & footer:
^ m B – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^
Modes of decay:
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^ This isotope has not yet been observed; given data is inferred or estimated from periodic trends.
^ Subsequently decays by double proton emission to 4 He for a net reaction of 7 B → 4 He + 3 1 H
^ Has 1 halo proton
^ Intermediate product of a branch of proton-proton chain in stellar nucleosynthesis as part of the process converting hydrogen to helium
^ Immediately decays into two α particles, for a net reaction of 9 B → 2 4 He + 1 H
^ One of the few stable odd-odd nuclei
^ Immediately decays into two α particles, for a net reaction of 12 B → 3 4 He + e −
^ a b c Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.
^ a b Has 2 halo neutrons
Boron-8
Boron-8 is an isotope of boron that undergoes β+ decay to beryllium-8 with a half-life of 771.9(9) ms . It is the strongest candidate for a halo nucleus with a loosely-bound proton, in contrast to neutron halo nuclei such as lithium-11 .[ 7]
Although neutrinos from boron-8 beta decays within the Sun make up only about 80 ppm of the total solar neutrino flux , they have a higher energy centered around 10 MeV,[ 8] and are an important background to dark matter direct detection experiments.[ 9] They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.
Applications
Boron-10
Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.
References
^ "Standard Atomic Weights: Boron" . CIAAW . 2009.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi :10.1515/pac-2019-0603 . ISSN 1365-3075 .
^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C . 45 (3): 030003. doi :10.1088/1674-1137/abddaf .
^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi :10.1088/1674-1137/abddae .
^ a b "Atomic Weight of Boron" . CIAAW .
^ a b Leblond, S.; et al. (2018). "First observation of 20 B and 21 B". Physical Review Letters . 121 (26): 262502–1–262502–6. arXiv :1901.00455 . doi :10.1103/PhysRevLett.121.262502 . PMID 30636115 . S2CID 58602601 .
^ Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix (November 2017). "Towards laser spectroscopy of the proton-halo candidate boron-8". Hyperfine Interactions . 238 (1): 25. Bibcode :2017HyInt.238...25M . doi :10.1007/s10751-017-1399-5 . S2CID 254551036 .
^ Bellerive, A. (2004). "Review of solar neutrino experiments". International Journal of Modern Physics A . 19 (8): 1167– 1179. arXiv :hep-ex/0312045 . Bibcode :2004IJMPA..19.1167B . doi :10.1142/S0217751X04019093 . S2CID 16980300 .
^ Cerdeno, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro; Vincent, Aaron C.; Boehm, Celine (2016). "Physics from solar neutrinos in dark matter direct detection experiments". JHEP . 2016 (5): 118. arXiv :1604.01025 . Bibcode :2016JHEP...05..118C . doi :10.1007/JHEP05(2016)118 . S2CID 55112052 .
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102
https://borates.today/isotopes-a-comprehensive-guide/#:~:text=Boron%20isotope%20elements%20with%20masses,11%20mostly%20decay%20into%20carbon .