Inoue surface

In complex geometry, an Inoue surface is any of several complex surfaces of Kodaira class VII. They are named after Masahisa Inoue, who gave the first non-trivial examples of Kodaira class VII surfaces in 1974.[1]

The Inoue surfaces are not Kähler manifolds.

Inoue surfaces with b2 = 0

Inoue introduced three families of surfaces, S0, S+ and S, which are compact quotients of (a product of a complex plane by a half-plane). These Inoue surfaces are solvmanifolds. They are obtained as quotients of by a solvable discrete group which acts holomorphically on

The solvmanifold surfaces constructed by Inoue all have second Betti number . These surfaces are of Kodaira class VII, which means that they have and Kodaira dimension . It was proven by Bogomolov,[2] Li–Yau[3] and Teleman[4] that any surface of class VII with is a Hopf surface or an Inoue-type solvmanifold.

These surfaces have no meromorphic functions and no curves.

K. Hasegawa [5] gives a list of all complex 2-dimensional solvmanifolds; these are complex torus, hyperelliptic surface, Kodaira surface and Inoue surfaces S0, S+ and S.

The Inoue surfaces are constructed explicitly as follows.[5]

Of type S0

Let φ be an integer 3 × 3 matrix, with two complex eigenvalues and a real eigenvalue c > 1, with . Then φ is invertible over integers, and defines an action of the group of integers, on . Let This group is a lattice in solvable Lie group

acting on with the -part acting by translations and the -part as

We extend this action to by setting , where t is the parameter of the -part of and acting trivially with the factor on . This action is clearly holomorphic, and the quotient is called Inoue surface of type

The Inoue surface of type S0 is determined by the choice of an integer matrix φ, constrained as above. There is a countable number of such surfaces.

Of type S+

Let n be a positive integer, and be the group of upper triangular matrices

The quotient of by its center C is . Let φ be an automorphism of , we assume that φ acts on as a matrix with two positive real eigenvalues a, b, and ab = 1. Consider the solvable group with acting on as φ. Identifying the group of upper triangular matrices with we obtain an action of on Define an action of on with acting trivially on the -part and the acting as The same argument as for Inoue surfaces of type shows that this action is holomorphic. The quotient is called Inoue surface of type

Of type S

Inoue surfaces of type are defined in the same way as for S+, but two eigenvalues a, b of φ acting on have opposite sign and satisfy ab = −1. Since a square of such an endomorphism defines an Inoue surface of type S+, an Inoue surface of type S has an unramified double cover of type S+.

Parabolic and hyperbolic Inoue surfaces

Parabolic and hyperbolic Inoue surfaces are Kodaira class VII surfaces defined by Iku Nakamura in 1984.[6] They are not solvmanifolds. These surfaces have positive second Betti number. They have spherical shells, and can be deformed into a blown-up Hopf surface.

Parabolic Inoue surfaces contain a cycle of rational curves with 0 self-intersection and an elliptic curve. They are a particular case of Enoki surfaces which have a cycle of rational curves with zero self-intersection but without elliptic curve. Half-Inoue surfaces contain a cycle C of rational curves and are a quotient of a hyperbolic Inoue surface with two cycles of rational curves.

Hyperbolic Inoue surfaces are class VII0 surfaces with two cycles of rational curves.[7] Parabolic and hyperbolic surfaces are particular cases of minimal surfaces with global spherical shells (GSS) also called Kato surfaces. All these surfaces may be constructed by non invertible contractions.[8]

Notes

  1. ^ M. Inoue, "On surfaces of class VII0," Inventiones math., 24 (1974), 269–310.
  2. ^ Bogomolov, F.: "Classification of surfaces of class VII0 with b2 = 0", Math. USSR Izv 10, 255–269 (1976)
  3. ^ Li, J., Yau, S., T.: "Hermitian Yang–Mills connections on non-Kähler manifolds", Math. aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys. 1, 560–573, World Scientific Publishing (1987)
  4. ^ Teleman, A.: "Projectively flat surfaces and Bogomolov's theorem on class VII0-surfaces", Int. J. Math., Vol. 5, No 2, 253–264 (1994)
  5. ^ a b Keizo Hasegawa Complex and Kähler structures on Compact Solvmanifolds, J. Symplectic Geom. Volume 3, Number 4 (2005), 749–767.
  6. ^ I. Nakamura, "On surfaces of class VII0 with curves," Inv. Math. 78, 393–443 (1984).
  7. ^ I. Nakamura. "Survey on VII0 surfaces", Recent Developments in NonKaehler Geometry, Sapporo, 2008 March.
  8. ^ G. Dloussky, "Une construction elementaire des surfaces d'Inoue–Hirzebruch". Math. Ann. 280, 663–682 (1988).


Read other articles:

DJ Got Us Fallin' in LoveSingel oleh Usher featuring Pitbulldari album mini VersusSisi-BLil Freak (Mig & Rizzo Extended Mix)Dirilis12 Juli 2010 (2010-07-12)GenreDance-popEuropopDurasi3:41LabelLaFaceJivePenciptaMax MartinShellbackSavan KotechaArmando PérezProduserMax MartinShellbackKronologi singel Usher There Goes My Baby (2010) DJ Got Us Fallin' in Love (2010) Hot Tottie (2010) Kronologi singel Pitbull I Like It(2010) DJ Got Us Fallin' in Love(2010) Bon, Bon(2010) Video m...

 

Camilo Dos Santos Informasi pribadiLahir22 September 1963 (umur 60)Balibo, Timor PortugisPartai politikGerindraKarier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratPangkat KaptenSatuanInfanteriSunting kotak info • L • B Kapten Inf. (Purn.) Camilo Dos Santos[1] (lahir 22 September 1963) adalah seorang Purnawirawan TNI-AD yang terakhir menjabat sebagai Komandan Koramil Naikliu. Jabatan terakhir perwira asal Timor Timur ini adalah Komandan Koramil Camplong....

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2013) (Learn how and when to remove this template message) 1928 Louisiana Democratic gubernatorial primary ← 1924 January 17, 1928 1932 →   Candidate Huey P. Long Riley J. Wilson Oramel H. Simpson Party Democratic Democratic Democratic Popular vote 126,842 81,747 80,326...

Области памяти IBM PC Этот перевод статьи с другого языка требует улучшения (см. Рекомендации по переводу). Вы можете помочь улучшить перевод. Оригинал можно найти слева в списке языков.Статья, целиком являющаяся машинным переводом, может быть удалена на основании критерия ...

 

Nama ini menggunakan aturan penamaan Slavia Timur; nama patronimiknya adalah Adyamovich dan nama keluarganya adalah Kuzyaev. Daler Kuzyayev Kuzyayev bersama Zenit Saint Petersburgpada 2017Informasi pribadiNama lengkap Daler Adyamovich Kuzyayev[1]Tanggal lahir 15 Januari 1993 (umur 31)[1]Tempat lahir Naberezhnye Chelny, Tatarstan, RusiaTinggi 1,82 m (5 ft 11+1⁄2 in)[2]Posisi bermain GelandangInformasi klubKlub saat ini Le HavreNomor 14Karie...

 

العلاقات التشيكية الشمال مقدونية التشيك شمال مقدونيا   التشيك   شمال مقدونيا تعديل مصدري - تعديل   العلاقات التشيكية الشمال مقدونية هي العلاقات الثنائية التي تجمع بين التشيك وشمال مقدونيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرج�...

British politician (1880–1954) For the U.S. congressional representative from Indiana, see Arthur H. Greenwood. The Right HonourableArthur GreenwoodCH MPGreenwood in 1924Paymaster GeneralIn office9 July 1946 – 5 March 1947Prime MinisterClement AttleePreceded byFrederick LindemannSucceeded byHilary MarquandLord Keeper of the Privy SealIn office27 July 1945 – 17 April 1947Prime MinisterClement AttleePreceded byMax AitkenSucceeded byPhilip InmanMinister without Portfo...

 

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Livio Risso Nazionalità  Italia Calcio Ruolo Centrocampista Termine carriera 1949 Carriera Squadre di club1 1939-1940 Dopolavoro Pirelli? (?)1941-1945 Lazio1 (0)1945 Bari? (?)1945-1946 Italia Libera? (?)1946-1948 Civita Castellana? (?)1949-1950 Romulea? (?)1950-1951 STEFER ...

 

Former railway station in England For the current station serving Rainford, see Rainford railway station. Rainford VillageGeneral informationLocationRainford, St HelensEnglandCoordinates53°30′10″N 2°47′14″W / 53.5027°N 2.7872°W / 53.5027; -2.7872Grid referenceSD478010PlatformsTwoOther informationStatusDisusedHistoryOriginal companySt Helens Canal and RailwayPre-groupingLondon and North Western RailwayPost-groupingLondon, Midland and Scottish RailwayKey date...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

American politician This article is about the U.S. Representative from Pennsylvania. For American politician and governor of Michigan, see William Milliken. William H. Milliken, Jr.Member of the U.S. House of Representativesfrom Pennsylvania's 7th districtIn officeJanuary 3, 1959 – January 3, 1965Preceded byBenjamin F. JamesSucceeded byG. Robert WatkinsMember of the Pennsylvania House of Representatives for the Delaware County districtIn office1943-19461949-1950 Personal details...

 

Strong, bright, deep reddish purple color For other uses, see Crimson (disambiguation). Crimson      Color coordinatesHex triplet#DC143CsRGBB (r, g, b)(220, 20, 60)HSV (h, s, v)(348°, 91%, 86%)CIELChuv (L, C, h)(47, 140, 8°)SourceHTML/CSS[1]ISCC–NBS descriptorVivid redB: Normalized to [0–255] (byte) Crimson is a rich, deep red color, inclining to purple.[2] It originally meant the color of the kermes dye produced from a scale insect, Kermes vermilio, b...

Indian politician (1929–2020) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (August 2022) (Learn how and when to remove this message) Kadambur M. R. JanarthananBorn(1929-10-22)22 October 1929Kadambur, Madras State, British India(present day Tamil Nadu, India)Died26 December 2020(2020-12-26) (aged 91)Thoothukudi, Tami...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Baseball team Stanford Cardinal baseball 2024 Stanford Cardinal baseball teamFounded1892; 132 years ago (1892)UniversityStanford UniversityAthletic directorBernard MuirHead coachDavid Esquer (7th season)ConferencePac-12 ConferenceLocationStanford, CaliforniaHome stadiumKlein Field at Sunken Diamond (Capacity: 4,000)NicknameCardinalColorsCardinal and white[1]   NCAA Tournament champions1987, 1988College World Series runner-up2000, 2001, 2003Co...

Государственный национальный природный парк — особо охраняемая природная территория со статусом природоохранного и научного учреждения, предназначенная для сохранения биологического и ландшафтного разнообразия, использования в природоохранных, эколого — про�...

 

Protected area in Queensland, AustraliaGoold Island National ParkQueenslandIUCN category II (national park) Goold IslandGoold Island National ParkCoordinates18°10′01″S 146°10′16″E / 18.16694°S 146.17111°E / -18.16694; 146.17111Area8.3 km2 (3.2 sq mi)Managing authoritiesQueensland Parks and Wildlife ServiceWebsiteGoold Island National ParkSee alsoProtected areas of Queensland Goold Island is a national park in Queensland, Australia, 1,250...

 

Member Bank of Federal Reserve Federal Reserve Bank of St. LouisFederal Reserve SealHeadquartersHeadquartersBroadway and Locust StreetSt. Louis, Missouri, USAEstablishedMay 18, 1914 (110 years ago) (1914-05-18)PresidentAlberto G. Musalem[1]Central bank of Eighth District  ArkansasParts of:  Illinois  Indiana  Kentucky  Mississippi  Missouri  Tennessee Websitewww.stlouisfed.orgThe Federal Reserve Bank of St. Louis is one of 12 ...

Species of tree Aesculus turbinata Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Sapindales Family: Sapindaceae Genus: Aesculus Species: A. turbinata Binomial name Aesculus turbinataBlume Synonyms[1][2][3] Aesculus turbinata f. pubescens (Rehder) Ohwi ex Yas Endo Aesculus turbinata var. pubescens Rehder Aesculus dissimilis Blume Pawia dissimilis Kuntze Pawia turbinata Kuntze Aesculus turbina...

 

Canadian curler Kerry GalushaCurlerBornKerry Koe (1977-11-03) November 3, 1977 (age 46)Yellowknife, Northwest Territories, CanadaTeamCurling clubYellowknife CC, Yellowknife, NTCurling career Member Association Northwest TerritoriesHearts appearances21 (1998, 2001, 2002, 2005, 2006, 2007, 2008, 2009, 2011, 2012, 2013, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024)Top CTRS ranking14th (2021–22) Medal record Women's Curling Representing  Northwest Territories Arctic...