Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products;[4] Pb, U, Zn (S. viminalix);[8] Potassium ferrocyanide (S. babylonica L.)[9]
Tolerance only. Lipid peroxidation level increases; activities of antioxidative enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase are depressed.
Phytoextraction. Its rhizosphere's bacterial population is less dense than with Trifolium pratense but richer in specific metal-resistant bacteria.[12]
Glomus mosseae as amendment. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution.
Glomus mosseae as amendment. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution.
Glomus mosseae as chelating agent. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution.
Leaves: much less uptake in Larch and Sycamore maple than in Spruce. 20% of the translocated caesium into new leaves resulted from root-uptake 2.5 years after the Chernobyl accident.[18]
27 records of plants; origin Africa. Vernacular name: 'copper flower'. This species' phanerogamme has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[22]
Accumulates radionuclides;[16] At a contaminated wastewater site in Ashtabula, Ohio, 4 wk-old splants can remove more than 95% of uranium in 24 hours.[19] Phytoextraction & rhizofiltration.
Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, TCE and by-products;[4] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9]
Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products (Salix spp.);[4] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9]
Phytoextraction. Perchlorate (wetland halophytes). No ferrocyanide in air from plant transpiration. A large fraction of initial mass was metabolized during transport within the plant.[9]
Semi-anaerobic and resistant, good for rhizofiltration[29]
Notes
Uranium: The symbol for Uranium is sometimes given as Ur instead of U. According to Ulrich Schmidt[8] and others, plants' concentration of uranium is considerably increased by an application of citric acid, which solubilizes the uranium (and other metals).
Radionuclides: Cs-137 and Sr-90 are not removed from the top 0.4 meters of soil even under high rainfall, and migration rate from the top few centimeters of soil is slow.[30]
Radionuclides: Plants with mycorrhizal associations are often more effective than non-mycorrhizal plants at the uptake of radionuclides.[31]
Radionuclides: In general, soils containing higher amounts of organic matter will allow plants to accumulate higher amounts of radionuclides.[30] See also note on Lolium multiflorum in Paasikallio 1984.[21] Plant uptake is also increased with a higher cation exchange capacity for Sr-90 availability, and a lower base saturation for uptake of both Sr-90 and Cs-137.[30]
Radionuclides: Fertilizing the soil with nitrogen if needed will indirectly increase the take-up of radionuclides by generally boosting the plant's overall growth and more specifically roots' growth. But some fertilizers such as K or Ca compete with the radionuclides for cation exchange sites, and will not increase the take-up of radionuclides.[30]
Radionuclides: Zhu and Smolders, lab test:[32] Cs uptake is mostly influenced by K supply. The uptake of radiocaesium depends mainly on two transport pathways on plant root cell membranes: the K+ transporter and the K+ channel pathway. Cs is likely transported by the K+ transport system. When external concentration of K is limited to low levels, le K+ transporter shows little discrimination against Cs+; if K supply is high, the K+ channel is dominant and shows high discrimination against Cs+. Caesium is very mobile within the plant, but the ratio Cs/K is not uniform within the plant. Phytoremediation as a possible option for the decontamination of caesium-contaminated soils is limited mainly by that it takes tens of years and creates large volumes of waste.
Alpine pennycress or Alpine Pennygrass is found as Alpine Pennycrest in (some books).
The references are so far mostly from academic trial papers, experiments and generally of exploration of that field.
Radionuclides: Broadley and Willey[33] find that across 30 taxa studied, Gramineae and Chenopodiaceae show the strongest correlation between Rb (K) and Cs concentration. The fast-growing Chenopodiaceae discriminate approx. 9 times less between Rb and Cs than the slow-growingGramineae, and this correlate with highest and lowest concentrations achieved respectively.
Caesium: In Chernobyl-derived radioactivity, the amount of contamination is dependent on the roughness of bark, absolute bark surface and the existence of leaves during the deposition. The major contamination of the shoots is from direct deposition on the trees.[18]
Annotated References
^ abcdefghijklmnopqrstuMcCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 898
^ abcdefghDushenkov, S., A. Mikheev, A. Prokhnevsky, M. Ruchko, and B. Sorochinsky, Phytoremediation of Radiocesium-Contaminated Soil in the Vicinity of Chernobyl, Ukraine. Environmental Science and Technology 1999. 33, no. 3 : 469-475. Cited in Phytoremediation of radionuclides.
^ abcdefNegri, C. M., and R. R. Hinchman, 2000. The use of plants for the treatment of radionuclides. Chapter 8 of Phytoremediation of toxic metals: Using plants to clean up the environment, ed. I. Raskin and B. D. Ensley. New York: Wiley-Interscience Publication. Cited in Phytoremediation of Radionuclides.
^ abcA. Paasikallio, The effect of time on the availability of strontium-90 and cesium-137 to plants from Finnish soils. Annales Agriculturae Fenniae, 1984. 23: 109-120. Cited in Westhoff99.
^Huang, J. W., M. J. Blaylock, Y. Kapulnik, and B. D. Ensley, 1998. Phytoremediation of Uranium-Contaminated Soils: Role of Organic Acids in Triggering Uranium Hyperaccumulation in Plants. Environmental Science and Technology. 32, no. 13 : 2004-2008. Cited in Phytoremediation of radionuclides.
^ abc[2] "Living Machines". Erik Alm describes them as 'freaks' because of their over-abundant root system even in such nutrient-rich environments. This is a prime factor in treating wastewaters: more surface for adsorption / absorption, and finer filter for larger impurities
^ abcdefg[3], "Living Machines". These marsh plants can live in semi-anaerobic environments and are used in wastewater treating ponds
^J.A. Entry, P. T. Rygiewicz, W.H. Emmingham. Strontium-90 uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environmental Pollution 1994, 86: 201-206. Cited in Westhoff99.