Hydrostatic seal

A hydrostatic seal is a non-contacting mechanical seal that operates under an equilibrium of forces. Unlike traditional hydrodynamic seals, hydrostatic seals have two different pressure zones that are used to establish a balanced pressure zone between two seal faces.[1] The two-pressure system makes the seal unique because typical mechanical seals have one pressure zone that created causes a buildup of pressure that will eventually cause the seal to malfunction. After pressure has come to an equilibrium at the seal face, an incompressible fluid is then released between the two seal faces. The fluid creates a film around the seal face that acts as a lubricant and as a medium for the substance flowing through the seal. Hydrostatic seals have been used in the aircraft industry; however they have seen very little commercial use because there is minimal research about the seals.

Pressure and Operation

Once pressure is applied and the seal comes together, a viscous liquid is released between the two seal faces and a thin film is formed to help create an airtight seal. If the amount of pressure inside of the seal is increased and there is an excess of pressure between the face plates, the two faces move apart and the seal begins to open. On the contrary, if the pressure is dropped and there is not enough pressure within the seal, the two seal faces come together and the hydrostatic seal begins to form.[2] The flow rate of the system can also be controlled with great accuracy by limiting the amount of pressure within the seal. Pressure zones can be changed to create an equilibrium within the system that would allow less leakage in the overall system.

Seal Face

The seals dual pressure zone helps maintain a constant pressure zone within the system. The constant pressure stabilizes the seal and does not allow the two seal faces to come in contact. There are face control grooves on both of seal faces that stabilize each face in the axial direction. The slightest axial movement will cause the two seal faces to touch and erosion of the seal will begin to occur.[3]

The rear face plate consists of a small opening that houses the injection system, which feeds the incompressible fluids through the system. Once the fluid is inside the seal, it forms a thin film around the entire inner system. After creating the film, the fluids then flow out of the seal and on to the rear face plate, which cools the system and prevents any excess heat from building up.[4] This fluid cycle is continuously repeated while the seal is in operation.

Applications

Hydrostatic seals were first developed in the early 1960s to control the sealing of compressor air in the aircraft industry. Recently hydrostatic seals have only been used in the compressor industry because hydrodynamic seals have much greater application. The hydrostatic seal also has great potential in the chemical industry since it can be used to transport and seal chemicals. However, the chemical industry has set very strict regulations and the seal cannot be used for certain chemicals because of the constant seal leakage.[1][5]

Generations of hydrostatic seals

First generation

The first hydrostatic seal was developed to replace current hydrodynamic seals; previous hydrodynamic seals were costly to manufacture and were tedious to assemble. First generation hydrostatic seals used a two pressure system to establish equilibrium at the seal face. The seal face was developed to work under high pressure conditions, however the seal face began to warp and deteriorate during stress tests. Once ammonia ( the liquid used in the first hydrostatic seal ) was added, the two seal faces would make contact with each other and begin the erosion process. Cold water was then tested as the incompressible fluid, it has double the viscosity as ammonia, which showed favorable results. Since cold water had double the viscosity of ammonia, the water prevented the seals from making contact with each other, thus causing the system to run properly.[2]

First Generation: Issues

- High pressure conditions

- recycles fluid in a continuous cycle, may have stagnant fluids which cause blockage

- Seal faces began to erode under certain circumstances

Second Generation

The second hydrostatic seal was an attempt to resolve first generation hydrostatic seal problems: erosion of seals, high pressure build up, and stagnant fluids. Second generation hydrostatic seals had a redesigned seal face; new face control grooves were added to help stabilize the seals while under extreme conditions. Prior to the face control grooves, the seal faces were not balanced and would begin to move under high pressure conditions. Due to the movement, the seal faces would become misaligned when the seals moved, and that caused the seal faces to deteriorate, resulting in an unusable seal.[2]

Second generation: Upgrades

- attempt to fix warping caused by system error

- added face control grooves to prevent any erosion of seal faces

- resolved any areas where fluid remains stagnant and cause blockage

Arising Problems

Hydrostatic seals should last multiple years without any deterioration to its components due to its overall structure. There should not be any contact between the two seal faces or else the condition of the seal will begin to deteriorate. Current Hydrodynamic seals begin to deteriorate over time because the two faces are always in contact with each other.

In addition, any misalignment of the seal faces will cause them to rub which will begin to morph the seal faces and eventually cause the entire seal to become structurally unstable. Izchak Etsion, a researcher at the Lewis Research Center, conducted an experiment to test what happens to a hydrostatic seal when its faces are misaligned. Etsion discovered that high pressures directed towards the outer face of the seal would cause static instability, while high pressure on the inner face of the seal would cause the seal to become more stable.[6] In addition, axial misalignment would also cause the horizontal shaft to shift in the vertical direction; this misalignment would result in a faulty seal if the restoring force is not great enough to correct the shift in components.

Leakage

The structure of the seal brings up the problem of leakage within the system. Since there is always a minuscule gap between two parts, there is always the problem of leakage, however the system’s structure allows leakage to be controlled to a very precise level.

Another problem that arises about hydrostatic seals is that excess leakage may eventually lead to erosion of the seal’s structure. Due to the axially rotating face seal, any excess leakage will have a high fluid velocity which can erode away at the face plates, eventually leading to a faulty seal.[2]

References

  1. ^ a b "Hydrostatic sealing". www.mcnallyinstitute.com. Retrieved 2016-10-25.
  2. ^ a b c d "A Cavitation Resistant Hydrostatic Seal for High Pressure Breakdown" (PDF).
  3. ^ Prouty, Warren Conrad; Bond, John Clark (May 26, 1998), Hydrostatic seal, retrieved 2016-11-03
  4. ^ Heinen, Manfred (Sep 23, 1986), Hydrostatic and hydrodynamic seal for rotating a rotating shaft, retrieved 2016-10-26
  5. ^ "Hydrostatic seal". www.mcnallyinstitute.com. Retrieved 2016-11-04.
  6. ^ Etsion, Izhak (November 1976). "Nonaxisymmetric Incompressible Hydrostatic Pressure Effects in Radial Face Seals" (PDF). ntrs.nasa.gov. Retrieved 2016-10-29.

Read other articles:

2010-talet14–5 år sedan År: 2010 – 2011 – 2012 – 2013 – 20142015 – 2016 – 2017 – 2018 – 2019 Decennium: 1990-talet – 2000-talet – 2010-talet2020-talet – 2030-talet – 2040-talet2050-talet – 2060-talet – 2070-talet2080-talet – 2090-talet – 2100-talet Sekel: 1900-talet – 2000-talet – 2100-talet Födda och avlidna Födda – Avlidna 2010-talet, eller i vardagligt tal 10-talet, var det förra decenniet, som kom efter 2000-talet och före 2020-talet. Det bö...

 

Glífo de códice que caracteriza al eb El eb o eb' es el doceavo día del Tzolkin y simboliza al césped y al rocío.[1]​[2]​ Otro significado según el antiguo maya yucateco es «camino» (Be’E, bej, beel).[1]​ Este día está asociado a la «escalera celestial», conocida como «camino de la vida».[1]​ Otras asociaciones de este día es al «rumbo sur», al color amarillo y a la deidad de las lluvias dañinas.[2]​ El Eb era considerado por los mayas como el...

 

Gal to KyōryūSampul manga volume pertama oleh Kodanshaギャルと恐竜(Gyaru to Kyōryū)GenreKomedi[1]Penggalan kehidupan[2] MangaPengarangMoriko MoriIlustratorCota TomimuraPenerbitKodanshaPenerbit bahasa InggrisNA Kodansha USA (digital)MajalahWeekly Young MagazineDemografiSeinenTerbit15 Oktober 2018 – 24 Januari 2022Volume6 Seri animeSutradaraJun AokiSkenarioJun AokiMusikGinStudioSpace Neko CompanyKamikaze DougaPelisensiFunimationSaluranasliTokyo MX, BS11Tayang 5 April...

Al-SelayyPermukimanAl-SelayyLocation in the Kingdom of Saudi ArabiaKoordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Koordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Negara Arab SaudiPemerintahan • Gubernur Pangeran RiyadhFaisal bin Bandar Al Saud • Wali kotaIbraheem Mohammed Al-SultanKetinggian612 m (2,008 ft)Zona waktuUTC+3 (AST) • Musim panas (DST)UT...

 

Zakharia 4Sebagian Kitab Zakharia pada Codex Gigas, yang dibuat sekitar abad ke-13.KitabKitab ZakhariaKategoriNabi-nabi KecilBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen38← pasal 3 pasal 5 → Zakharia 4 (disingkat Zak 4) adalah bagian dari Kitab Zakharia dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Memuat Firman Allah yang disampaikan dengan perantaraan nabi Zakharia.[1][2] Teks Naskah aslinya ditulis dalam bahasa Ibrani. Pasal ini ...

 

Hybrid artistic style Anglo-Japanese redirects here. For other uses, see Anglo-Japanese (disambiguation). Anglo-Japanese StyleDresser Teapot (1879) inspired by watching Japanese Tea Ceremony in 1877Years active1850s–1910sLocationUnited KingdomMajor figuresChristopher Dresser, Edward William Godwin, Thomas Jeckyll, Arthur Lasenby Liberty, Arthur SilverInfluencesArts & CraftsYokohama ShashinUkiyo-eJapanese artInfluencedPre-raphaelites, Mintons Pottery, Aestheticism, British Queen Anne Rev...

CevitalJenisSociété AnonymeIndustriMakananDidirikan1998Kantorpusat Béjaïa, AljazairTokohkunciIssad Rebrab (pendiri)ProdukMakananSitus webhttp://www.cevital.com/ Cevital spa adalah produsen makanan besar di Aljazair yang didirikan oleh Issad Rebrab. Perusahaan ini bergerak di industri makanan. Kantor pusatnya terletak di Béjaïa.[1] Cevital adalah anggota pendiri proyek Desertec. Pendapatan perusahaan pada tahun 2009 mencapai $3.589 juta. Produk Minyak nabati Gula putih Margarin M...

 

Ashton LambieAshton Lambie (2020)InformationsNaissance 12 décembre 1990 (33 ans)LincolnNationalité américainePrincipales victoires Champion du monde de poursuite (2021)modifier - modifier le code - modifier Wikidata Ashton Lambie, né le 12 décembre 1990 à Lincoln, Nebraska, est un coureur cycliste américain. Spécialiste de la piste, il est champion du monde de poursuite en 2021 et est le premier poursuiteur à franchir la barre des 4 minutes dans cette spécialité. Il pratique �...

 

Cet article est une ébauche concernant une chronologie ou une date et le Canada. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Éphémérides Chronologie du Canada 1954 1955 1956  1957  1958 1959 1960Décennies au Canada :1920 1930 1940  1950  1960 1970 1980 Chronologie dans le monde 1954 1955 1956  1957  1958 1959 1960Décennies :1920 1930 1940  1950  1960 19...

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

Wakil Bupati Kolaka UtaraPetahanaLowongsejak 22 Agustus 2022Masa jabatan5 tahun dan dapat dipilih kembali untuk satu kali masa jabatanDibentuk19 Juni 2007; 16 tahun lalu (2007-06-19)Pejabat pertamaS.T. Suhariah MuinSitus webSitus web resmi Berikut adalah daftar Wakil Bupati Kolaka Utara secara definitif sejak tahun 2007. Nomor urut Wakil Bupati Potret Partai Awal Akhir Masa jabatan Periode Bupati Ref. 1   S.T. Suhariah Muin PNBK 19 Juni 2007 19 Juni 2012 5 tahun, 0 ha...

 

Cet article est une ébauche concernant un cours d’eau et l’Allier. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Ours (homonymie). OursLocalisationPays  FranceLocalisation AllierCoordonnées 46° 38′ 31″ N, 3° 09′ 08″ EDimensionsLongueur 25 kmHydrographieType RivièreSuperficie du bassin 100 km2Affluent ChamaronSe jette dans Bur...

Anton Shunin Berseragam Dynamo Moscow pada 2011Informasi pribadiNama lengkap Anton Vladimirovich ShuninTanggal lahir 27 Januari 1987 (umur 37)Tempat lahir Moskow, Uni SovietTinggi 1,91 m (6 ft 3 in)Posisi bermain Penjaga gawangInformasi klubKlub saat ini Dynamo MoscowNomor 1Karier junior1994–2004 Dynamo MoscowKarier senior*Tahun Tim Tampil (Gol)2004– Dynamo Moscow 90 (0)Tim nasional‡2002–2003 Rusia U-19 2007 Rusia U-21 6 (0)2007– Rusia 2 (0) * Penampilan dan gol...

 

Bandar Udara IskandarIskandar AirportIATA: PKNICAO: WAGI (SEBELUMNYA WAOI)InformasiJenisPublik/MiliterPemilikRepublik IndonesiaPengelolaPemerintahMelayaniPangkalan BunLokasiPangkalan Bun, Kabupaten Kotawaringin Barat, Kalimantan Tengah, IndonesiaZona waktuWIB (+07:00)Ketinggian dpl23 mdplKoordinat2°42′18″S 111°40′23″E / 2.70500°S 111.67306°E / -2.70500; 111.67306Koordinat: 2°42′18″S 111°40′23″E / 2.70500°S 111.67306°E&#...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

习近平 习近平自2012年出任中共中央总书记成为最高领导人期间,因其废除国家主席任期限制、开启总书记第三任期、集权统治、公共政策与理念、知识水平和自述经历等争议,被中国大陸及其他地区的民众以其争议事件、个人特征及姓名谐音创作负面称呼,用以恶搞、讽刺或批评习近平。对习近平的相关负面称呼在互联网上已经形成了一种活跃、独特的辱包亚文化。 权力�...

 

Period of history since 1945 This article is about the historical era. For the comic-book miniseries, see Atomic Age (comics). For the design style, see Atomic Age (design). An early nuclear power plant that used atomic energy to generate electricity History of technology By technological eras Premodern Prehistoric Stone Age (lithic) Neolithic Revolution Copper Age Bronze Age Iron Age Ancient Modern Proto-industrialization First Industrial Revolution Standardization Second Industrial Revoluti...

 

Legendary king of Denmark Sigurd Snake-in-the-EyeEngraving from 1670Legendary kings of DenmarkReignc. 873?PredecessorHalfdan RagnarssonSuccessorHarthacnut I, Helge or Olof the BrashBornSigurd ÁslaugssonDied887 AD (killed in Frisia)DynastySigfredianFatherRagnar LothbrokMotherÁslaugReligionNorse Paganism Sigurd Snake-in-the-eye (Old Norse: Sigurðr ormr í auga) or Sigurd Ragnarsson was a semi-legendary Viking warrior and Danish king active from the mid to late 9th century. According to multi...

Historical Presbyterian organization For other entities with similar names, see American Presbyterian Church. Presbyterian Church in the United States of AmericaSeal of the General Assembly of PCUSAClassificationProtestantOrientationMainline ReformedPolityPresbyterian polityAssociations Plan of Union with the Congregational churches of New England (1801–1837) United Foreign and Domestic Missionary Societies (with the Reformed Church in America and the Associate Reformed Church, 1817–1826)...

 

Sporting event delegationPeru at the1988 Summer OlympicsIOC codePERNOCPeruvian Olympic CommitteeWebsitewww.coperu.org (in Spanish)in SeoulCompetitors21 (7 men and 14 women) in 7 sportsFlag bearer Rodrigo RangunaMedalsRanked 36th Gold 0 Silver 1 Bronze 0 Total 1 Summer Olympics appearances (overview)19001904–1932193619481952195619601964196819721976198019841988199219962000200420082012201620202024 Peru competed at the 1988 Summer Olympics in Seoul, South Korea. Medalists Medal Name S...