Hooke's atom

Hooke's atom, also known as harmonium or hookium, refers to an artificial helium-like atom where the Coulombic electron-nucleus interaction potential is replaced by a harmonic potential.[1][2] This system is of significance as it is, for certain values of the force constant defining the harmonic containment, an exactly solvable[3] ground-state many-electron problem that explicitly includes electron correlation. As such it can provide insight into quantum correlation (albeit in the presence of a non-physical nuclear potential) and can act as a test system for judging the accuracy of approximate quantum chemical methods for solving the Schrödinger equation.[4][5] The name "Hooke's atom" arises because the harmonic potential used to describe the electron-nucleus interaction is a consequence of Hooke's law.

Definition

Employing atomic units, the Hamiltonian defining the Hooke's atom is

As written, the first two terms are the kinetic energy operators of the two electrons, the third term is the harmonic electron-nucleus potential, and the final term the electron-electron interaction potential. The non-relativistic Hamiltonian of the helium atom differs only in the replacement:

Solution

The equation to be solved is the two electron Schrödinger equation:

For arbitrary values of the force constant, k, the Schrödinger equation does not have an analytic solution. However, for a countably infinite number of values, such as k, simple closed form solutions can be derived.[5] Given the artificial nature of the system this restriction does not hinder the usefulness of the solution.

To solve, the system is first transformed from the Cartesian electronic coordinates, (r1,r2), to the center of mass coordinates, (R,u), defined as

Under this transformation, the Hamiltonian becomes separable – that is, the |r1 - r2| term coupling the two electrons is removed (and not replaced by some other form) allowing the general separation of variables technique to be applied to further a solution for the wave function in the form . The original Schrödinger equation is then replaced by:

The first equation for is the Schrödinger equation for an isotropic quantum harmonic oscillator with ground-state energy and (unnormalized) wave function

Asymptotically, the second equation again behaves as a harmonic oscillator of the form and the rotationally invariant ground state can be expressed, in general, as for some function . It was long noted that f(u) is very well approximated by a linear function in u.[2] Thirty years after the proposal of the model an exact solution was discovered for k,[3] and it was seen that f(u)=1+u/2. It was later shown that there are many values of k which lead to an exact solution for the ground state,[5] as will be shown in the following.

Decomposing and expressing the Laplacian in spherical coordinates,

one further decomposes the radial wave function as which removes the first derivative to yield

The asymptotic behavior encourages a solution of the form

The differential equation satisfied by is

This equation lends itself to a solution by way of the Frobenius method. That is, is expressed as

for some and which satisfy:

The two solutions to the indicial equation are and of which the former is taken as it yields the regular (bounded, normalizable) wave function. For a simple solution to exist, the infinite series is sought to terminate and it is here where particular values of k are exploited for an exact closed-form solution. Terminating the polynomial at any particular order can be accomplished with different values of k defining the Hamiltonian. As such there exists an infinite number of systems, differing only in the strength of the harmonic containment, with exact ground-state solutions. Most simply, to impose ak = 0 for k ≥ 2, two conditions must be satisfied:

These directly force a2 = 0 and a3 = 0 respectively, and as a consequence of the three term recession, all higher coefficients also vanish. Solving for and yields

and the radial wave function

Transforming back to

the ground-state (with and energy ) is finally

Combining, normalizing, and transforming back to the original coordinates yields the ground state wave function:

The corresponding ground-state total energy is then .

Remarks

The exact ground state electronic density of the Hooke atom for the special case is[4]

From this we see that the radial derivative of the density vanishes at the nucleus. This is in stark contrast to the real (non-relativistic) helium atom where the density displays a cusp at the nucleus as a result of the unbounded Coulomb potential.

See also

References

  1. ^ Lucjan, Piela (2007). Ideas of Quantum Chemistry. Amsterdam: Elsevier. pp. 185–188. ISBN 978-0-444-52227-6.
  2. ^ a b N. R. Kestner; O. Sinanoglu (1962). "Study of Electron Correlation in Helium-Like Systems Using an Exactly Soluble Model". Phys. Rev. 128 (6): 2687–2692. Bibcode:1962PhRv..128.2687K. doi:10.1103/PhysRev.128.2687.
  3. ^ a b S. Kais; D. R. Herschbach; R. D. Levine (1989). "Dimensional scaling as a symmetry operation". J. Chem. Phys. 91 (12): 7791. Bibcode:1989JChPh..91.7791K. doi:10.1063/1.457247.
  4. ^ a b S. Kais; D. R. Herschbach; N. C. Handy; C. W. Murray; G. J. Laming (1993). "Density functionals and dimensional renormalization for an exactly solvable model". J. Chem. Phys. 99 (1): 417–425. Bibcode:1993JChPh..99..417K. doi:10.1063/1.465765.
  5. ^ a b c M. Taut (1993). "Two electrons in an external oscillator potential: Particular analytic solutions of a Coulomb correlation problem". Phys. Rev. A. 48 (5): 3561–3566. Bibcode:1993PhRvA..48.3561T. doi:10.1103/PhysRevA.48.3561. PMID 9910020.

Further reading

Read other articles:

Doping in figure skating involves the use of illegal performance-enhancing drugs (PEDs), specifically those listed and monitored by the World Anti-Doping Agency (WADA). Figure skaters occasionally have positive doping results but it is not common.[1] Bans can be enforced on figure skaters by the International Skating Union (ISU) and each country's individual skating federation.[2][3] These bans can often be career ending due to the competitive nature of figure skating...

 

 

Untuk karakter utama seri ini dengan nama yang sama, lihat SpongeBob SquarePants (karakter). Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah s...

 

 

Skyscraper in Sandton, South Africa The LeonardoThe tower in 2020Alternative names75 on MaudeRecord heightTallest in Africa from 2019 to 2021[I]Preceded byCarlton CentreSurpassed byIconic TowerGeneral informationStatusCompletedTypeMixed-useLocationSandton, Johannesburg, South AfricaCoordinates26°6′15.2″S 28°3′19.96″E / 26.104222°S 28.0555444°E / -26.104222; 28.0555444Groundbreaking17 November 2015Construction started2015Completed2019; 5 years a...

قرية لانكاستر     الإحداثيات 42°54′02″N 78°40′12″W / 42.9006893°N 78.6701142°W / 42.9006893; -78.6701142  [1] تاريخ التأسيس 1849  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة إيري  خصائص جغرافية  المساحة 7.1 كيلومتر مربع  ارتفاع 205 متر  عدد الس...

 

 

Pour les articles homonymes, voir Lotto. Lorenzo LottoBiographieNaissance 1480VeniseDécès 1556LoretteActivités Peintre, dessinateur en bâtimentAutres informationsOrdre religieux Ordre des Frères mineurs de saint FrançoisMouvements Haute Renaissance, maniérismeGenre artistique Peinture religieuseŒuvres principales Allégorie du Vice et de la Vertu, Portrait d'un jeune homme gentilhomme à ses études (d), Suzanne et les vieillards (d), chapelle SuardiSignaturemodifier - modifier le co...

 

 

Bakso SwediaAsalNegara asalSwedia RincianJenisbola daging Bahan utamadaging lbs Bakso Swedia atau dalam bahasa Swedia disebut köttbullar (kött: daging; bullar [bentuk jamak dari bulle]: roti kecil bulat) adalah makanan dari Swedia yang dibuat dari daging giling atau daging cincang dan berbentuk bulatan-bulatan kecil, agak mirip dengan bakso Indonesia. Namun, berbeda dengan bakso yang lazim dikenal di Indonesia, bakso Swedia ini biasanya ditumis. Makanan ini merupakan makanan sehari-hari yan...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Hein ter Poorten – berita · surat kabar · buku · cendekiawan · JSTOR Hein ter PoortenHein ter Poorten pada c. 1939–1942Lahir(1887-11-21)21 November 1887Buitenzorg, Hindia BelandaMeninggal15 Januari 196...

 

 

Stasiun Ginan岐南駅Stasiun Ginan, September 2009Lokasi4 Chome Shimoinjiki, Ginan-chō, Hashima-gun, Gifu-ken 501-6018JepangKoordinat35°23′22″N 136°46′08″E / 35.3895°N 136.7689°E / 35.3895; 136.7689Koordinat: 35°23′22″N 136°46′08″E / 35.3895°N 136.7689°E / 35.3895; 136.7689Operator MeitetsuJalur■Jalur Utama Meitetsu NagoyaLetak91.5 km dari ToyohashiJumlah peron2 peron sampingInformasi lainStatusTanpa stafKode sta...

 

 

1879 Iowa gubernatorial election ← 1877 October 14, 1879 1881 →   Nominee John H. Gear Henry H. Trimble Daniel Campbell Party Republican Democratic Greenback Popular vote 157,408 85,364 45,674 Percentage 53.94% 29.25% 15.65% County resultsGear:     30-40%      40-50%     50-60%     60-70%     70-80%      80-90% &...

Запрос «Св. Лаврентия» перенаправляется сюда; см. также другие значения.Река Святого Лаврентияфр. fleuve Saint-Laurent, англ. Saint Lawrence River Берег реки Святого Лаврентия недалеко от Камураски в Квебеке Характеристика Длина 1197 км Бассейн 1 344 200 км² Расход воды 10 100[1] ...

 

 

El agua cubre aproximadamente el 71% de la superficie terrestre[1]​ El origen del agua en la Tierra es objeto de una serie de investigaciones en los campos de la ciencia planetaria, la astronomía y la astrobiología. La Tierra es singular entre los planetas rocosos del sistema solar por ser el único, que se sepa, en tener océanos de agua líquida en su superficie.[2]​ El agua líquida —esencial para la vida tal como se conoce— continúa existiendo en la superficie de la Tie...

 

 

Coptostomabarbus wittei Status konservasiRisiko rendahIUCN167983 TaksonomiKerajaanAnimaliaFilumChordataKelasActinopteriOrdoCypriniformesFamiliCyprinidaeGenusCoptostomabarbusSpesiesCoptostomabarbus wittei lbs Coptostomabarbus wittei (nama umum: upjaw barb) adalah sebuah spesies cyprinid dalam genus Coptostomabarbus.[1] Spesies tersebut hidup di Angola, Botswana, Republik Demokratik Kongo, Zambia dan Zimbabwe.[1] Spesies tersebut dipakai oleh manusia sebagai makanan[1] R...

Tampak luar kafe, Maret 2006 Original Starbucks adalah nama yang sering diberikan untuk gerai Starbucks pertama. Gerai ini didirikan tahun 1971 di daerah lain, lalu dipindahkan ke Pike Place Market di Seattle, Washington, Amerika Serikat. Gerai ini masih mempertahankan arsitektur aslinya dan mematuhi panduan rancangan bangunan karena memiliki nilai sejarah.[1] Gerai ini menjadi tempat wisata dan dikunjungi banyak pelanggan.[2][3] Meski sering disebut Starbucks pertama,...

 

 

Theatrical genre featuring unscripted performance Swedish actors performing in theatresports, a competitive form of improv Improvisational theatre, often called improvisation or improv, is the form of theatre, often comedy, in which most or all of what is performed is unplanned or unscripted, created spontaneously by the performers. In its purest form, the dialogue, action, story, and characters are created collaboratively by the players as the improvisation unfolds in present time, without u...

 

 

Reino de RuandaRoyaume du Rwanda Reino independiente(1081-1890)Parte del África Oriental Alemana (1890-1916)Parte de Ruanda-Urundi(1916-1959) 1081-1961Bandera(1959-1961)Escudo(1959-1962) Lema: Imbaga Y’inyabutatu Ijambere (Kinyarwanda: Tres Pueblos Unidos prosperarán) Localización del Reino de Ruanda (en rojo)Capital NyanzaEntidad Reino independiente(1081-1890)Parte del África Oriental Alemana (1890-1916)Parte de Ruanda-Urundi(1916-1959)Idioma oficial Kinyarwanda, francésSuperficie his...

1896 Wisconsin gubernatorial election ← 1894 November 3, 1896 1898 →   Nominee Edward Scofield Willis C. Silverthorn Party Republican Democratic Popular vote 264,981 169,257 Percentage 59.67% 38.11% County resultsScofield:      50–60%      60–70%      70–80%      80–90%Silverthorn:      50–60% Governor before election William H...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: G...

 

 

此生者传记没有列出任何参考或来源。 (2022年12月19日)请协助補充可靠来源,针对在世人物的无法查证的内容将被立即移除。 崔允素최윤소女演员罗马拼音Choi Youn-So国籍 韩国出生 (1984-11-29) 1984年11月29日(39歲) 韩国全羅北道全州市职业演員语言韓語教育程度同德女子大學放送演藝系出道日期2003年出道作品電影《色即是空2笑女藏刀(朝鲜语:은장도 (영화))》活跃年...

Cecoslovacchia ai II Giochi olimpici invernaliSankt Moritz 1928 Codice CIOTCH Comitato nazionaleComitato Olimpico Cecoslovacco Atleti partecipanti25 in 5 discipline Di cui uomini/donne24 - 1 Medagliere Posizione 8ª 0 0 1 1 Cronologia olimpica (sommario)Giochi olimpici estivi 1920 · 1924 · 1928 · 1932 · 1936 · 1948 · 1952 · 1956 · 1960 · 1964 · 1968 · 1972 · 1976 · 1980 · 1984 · 1988 ...

 

 

Cet article est une ébauche concernant l’informatique et le jeu vidéo. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Capture d'écran du moteur physique Box2D Un moteur physique est, en informatique, une bibliothèque logicielle conçue pour simuler des systèmes physiques, comme en mécanique des solides (déformables ou non-déformable) o...