Hoeffding's inequality

In probability theory, Hoeffding's inequality provides an upper bound on the probability that the sum of bounded independent random variables deviates from its expected value by more than a certain amount. Hoeffding's inequality was proven by Wassily Hoeffding in 1963.[1]

Hoeffding's inequality is a special case of the Azuma–Hoeffding inequality and McDiarmid's inequality. It is similar to the Chernoff bound, but tends to be less sharp, in particular when the variance of the random variables is small.[2] It is similar to, but incomparable with, one of Bernstein's inequalities.

Statement

Let X1, ..., Xn be independent random variables such that almost surely. Consider the sum of these random variables,

Then Hoeffding's theorem states that, for all t > 0,[3]

Here E[Sn] is the expected value of Sn.

Note that the inequalities also hold when the Xi have been obtained using sampling without replacement; in this case the random variables are not independent anymore. A proof of this statement can be found in Hoeffding's paper. For slightly better bounds in the case of sampling without replacement, see for instance the paper by Serfling (1974).

Generalization

Let be independent observations such that and . Let . Then, for any ,[4]

Special Case: Bernoulli RVs

Suppose and for all i. This can occur when Xi are independent Bernoulli random variables, though they need not be identically distributed. Then we get the inequality[5]

or equivalently,

for all . This is a version of the additive Chernoff bound which is more general, since it allows for random variables that take values between zero and one, but also weaker, since the Chernoff bound gives a better tail bound when the random variables have small variance.

General case of bounded from above random variables

Hoeffding's inequality can be extended to the case of bounded from above random variables.[6]

Let X1, ..., Xn be independent random variables such that and almost surely. Denote by

Hoeffding's inequality for bounded from aboved random variables states that for all ,

In particular, if for all , then for all ,

General case of sub-Gaussian random variables

The proof of Hoeffding's inequality can be generalized to any sub-Gaussian distribution. Recall that a random variable X is called sub-Gaussian,[7] if

for some . For any bounded variable X, for for some sufficiently large T. Then for all so taking yields

for . So every bounded variable is sub-Gaussian.

For a random variable X, the following norm is finite if and only if X is sub-Gaussian:

Then let X1, ..., Xn be zero-mean independent sub-Gaussian random variables, the general version of the Hoeffding's inequality states that:

where c > 0 is an absolute constant.[8]

Proof

The proof of Hoeffding's inequality follows similarly to concentration inequalities like Chernoff bounds.[9] The main difference is the use of Hoeffding's Lemma:

Suppose X is a real random variable such that almost surely. Then

Using this lemma, we can prove Hoeffding's inequality. As in the theorem statement, suppose X1, ..., Xn are n independent random variables such that almost surely for all i, and let .

Then for s, t > 0, Markov's inequality and the independence of Xi implies:

This upper bound is the best for the value of s minimizing the value inside the exponential. This can be done easily by optimizing a quadratic, giving

Writing the above bound for this value of s, we get the desired bound:

Usage

Confidence intervals

Hoeffding's inequality can be used to derive confidence intervals. We consider a coin that shows heads with probability p and tails with probability 1 − p. We toss the coin n times, generating n samples (which are i.i.d Bernoulli random variables). The expected number of times the coin comes up heads is pn. Furthermore, the probability that the coin comes up heads at least k times can be exactly quantified by the following expression:

where H(n) is the number of heads in n coin tosses.

When k = (p + ε)n for some ε > 0, Hoeffding's inequality bounds this probability by a term that is exponentially small in ε2n:

Since this bound holds on both sides of the mean, Hoeffding's inequality implies that the number of heads that we see is concentrated around its mean, with exponentially small tail.

Thinking of as the "observed" mean, this probability can be interpreted as the level of significance (probability of making an error) for a confidence interval around of size 2ɛ:

Finding n for opposite inequality sign in the above, i.e. n that violates inequality but not equality above, gives us:

Therefore, we require at least samples to acquire a -confidence interval .

Hence, the cost of acquiring the confidence interval is sublinear in terms of confidence level and quadratic in terms of precision. Note that there are more efficient methods of estimating a confidence interval.

See also

Notes

  1. ^ Hoeffding (1963)
  2. ^ Vershynin (2018, p. 19)
  3. ^ Hoeffding (1963, Theorem 2)
  4. ^ Wasserman, Larry (2004). "All of Statistics". Springer Texts in Statistics. doi:10.1007/978-0-387-21736-9. ISSN 1431-875X.
  5. ^ Hoeffding (1963, Theorem 1)
  6. ^ Fan, Grama & Liu (2015, Corollary 2.7)
  7. ^ Kahane (1960)
  8. ^ Vershynin (2018, Theorem 2.6.2)
  9. ^ Boucheron (2013)

References

Read other articles:

FH-77 Fälthaubits FH 77A Allgemeine Angaben Militärische Bezeichnung FH-77 Herstellerbezeichnung Fälthaubits 77 Entwickler/Hersteller Bofors Entwicklungsjahr 1960er Jahre Produktionsstart 1978 Stückzahl 713 (Stand 1998)[1] Modellvarianten FH-77A, FH-77B Waffenkategorie Feldhaubitze Mannschaft FH-77A: 10FH-77B: 6 Technische Daten Gesamtlänge FH-77A: 11,16 mFH-77B: 11,60 m Rohrlänge FH-77A: 5,89 mFH-77B: 6,05 m Kaliber 155 mm Kaliberlänge FH-77A: L/38FH-77B: L/39 Gewicht inFeuer...

 

Sedative/Hypnotic medication for alcohol withdrawal Not to be confused with Clotrimazole or Chlormidazole. ClomethiazoleClinical dataAHFS/Drugs.comInternational Drug NamesRoutes ofadministrationOralATC codeN05CM02 (WHO) Legal statusLegal status BR: Class C1 (Other controlled substances)[1] UK: POM (Prescription only)[2] US: ℞-only In general: ℞ (Prescription only) Pharmacokinetic dataElimination half-life3.6–5 hoursIdentifiers IUPAC nam...

 

English footballer Nicky Southall Southall playing for Grimsby Town in 1994Personal informationFull name Leslie Nicholas SouthallDate of birth (1972-01-28) 28 January 1972 (age 52)Place of birth Middlesbrough, EnglandPosition(s) MidfielderTeam informationCurrent team Lordswood (manager)Youth career DarlingtonSenior career*Years Team Apps (Gls)1991–1995 Hartlepool United 138 (24)1995–1997 Grimsby Town 72 (6)1997–2001 Gillingham 154 (17)2001–2002 Bolton Wanderers 18 (1)2002 → Nor...

Shaw Communications& Nads pac Inc .JenisPublikKode emitenTemplat:TSXV (Kelas A)(voting)TSX: SJR.B (Kelas B) (non-voting)NYSE: SJRIndustriTelekomunikasiDidirikan1966; 58 tahun lalu (1966) (sebagai Capital Cable Television Company, Ltd.)Edmonton, Alberta, KanadaKantorpusat630 3rd Avenue SWCalgary, AlbertaT2P 4L4TokohkunciBradley S. Shaw (CEO)Paul McAleese (Presiden)[1]Paul McAleese (COO, Freedom Mobile)[2]ProdukTelevisi kabel, internet berkecepatan tinggi, telepon,...

 

«Non potete servire a Dio e a Mammona» (Gesù, in Mt 6,24 e nel Lc 16,13) Mammona ritratto da Louis Le Breton per il Dizionario infernale Il termine Mammona viene usato nel Nuovo Testamento per personificare il profitto, il guadagno e la ricchezza materiale, generalmente con connotazioni negative, e cioè accumulato in maniera rapida e disonesta ed altrettanto sprecato in lussi e piaceri. Nell'antichità lo si fa risalire ad un demonio, genericamente nella mitologia caldeo-siriaca, quindi ...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Native metal TetrataeniteSilvery-bright tetrataenite crystalsGeneralCategoryNative element mineralsFormula(repeating unit)FeNiIMA symbolTtae[1]Strunz classification1.AE.10Crystal systemTetragonalCrystal classDomatic (m) (same H-M symbol)Space groupPmUnit cell22.92 ųIdentificationFormula mass57.27 gmColorgray white, silver whiteCrystal habitGranular – Common texture observed in granite and other igneous rockCleavagenoneFracturemalleableMohs scale hardness3.5LustermetallicStreakgra...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Yadava College – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how and when to remove this message) Yadava CollegeMottoKnowledge is wealthTypeAutonomous co-educational collegeEstablished1969FounderShri. E. RengasamyShri. GovindarajanShri. ...

 

Photographsingolo discograficoScreenshot tratto dal video del branoArtistaDef Leppard Pubblicazionefebbraio 1983 Durata4:08 Album di provenienzaPyromania GenereHard rockPop metalHair metalAlbum-oriented rock EtichettaMercury ProduttoreRobert John Mutt Lange Registrazione1982 FormatiVinile Def Leppard - cronologiaSingolo precedenteBringin' On the Heartbreak(1981)Singolo successivoRock of Ages(1983) Photograph è un singolo del gruppo musicale britannico Def Leppard, il primo estratto dal loro ...

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Christine van MeeterenLahir(1885-04-26)26 April 1885Amsterdam, BelandaMeninggal3 Januari 1973(1973-01-03) (umur 87)Hoog-Keppel, BelandaPekerjaanPemeranTahun aktif1913–1936 Christine van Meeteren (26 April 1885 – 3 Januari 1...

 

بركة في شلالات بركلة تشير البيئة في ماليزيا إلى النظامين الإيكولوجي والجيولوجي الذين يشكلان البيئة الطبيعية لهذه الدولة الواقعة في جنوب شرق آسيا. تعد ماليزيا بلدا متنوعا من حيث الكائنات الحية، مع وجود مجموعة متنوعة من النباتات والحيوانات ذات التنوع البيولوجي الموجودة في...

Para otros usos de este término, véase Baracaldo (desambiguación). Barakaldo C. F.Datos generalesNombre Barakaldo Club de FútbolApodo(s) Fabriles, Baraka, PeñarolFundación 1917 (107 años)Colores          Presidente Ricardo AranaEntrenador Imanol de la SotaInstalacionesEstadio Nuevo LasesarreCapacidad 7 960 espectadoresUbicación Baracaldo, Vizcaya, EspañaInauguración 30 de septiembre de 2003 (20 años)Uniforme Titular Alternativ...

 

  هذه المقالة عن جنو/لينكس. لمعانٍ أخرى، طالع لينكس (توضيح). لينكسالشعارمعلومات عامةنوع مشروع عمل تعاوني نظام تشغيل سمي باسم نواة لينكس — لينوس تورفالدس — يونكس المنصة  القائمة ... دي إي سي ألفا — إكس 86 — إكس86-64 — بنية آرم — باور بي سي — ريسك في — معمارية ميبس المطور �...

 

ليو رومانيمعلومات عامةالبلد رومانياتاريخ الإصدار 2005رمز العملة Leuرمز الأيزو 4217 RONالمصرف المركزي مصرف رومانيا الوطنيدار سك العملة البنك الوطني الروماني سعر الصرف 0٫209 يورو (17 يناير 2020) تعديل - تعديل مصدري - تعديل ويكي بيانات ليو روماني (بالرومانية leu) هي العملة المستعملة في رو�...

Ranrupt Vue à Ranrupt. Blason Administration Pays France Région Grand Est Collectivité territoriale Collectivité européenne d'Alsace Circonscription départementale Bas-Rhin Arrondissement Molsheim Intercommunalité Communauté de communes de la Vallée de la Bruche Maire Mandat Thierry Sieffer 2020-2026 Code postal 67420 Code commune 67384 Démographie Gentilé Ranruptois(es) Populationmunicipale 303 hab. (2021 ) Densité 21 hab./km2 Géographie Coordonnées 48° 22′&#...

 

Coppa del Mondo di Skeleton 1993/94VincitoriSingolo uomini Christian Auer Dati manifestazioneTappe4 Gare individuali4 1992/93 1994/95 La Coppa del Mondo di skeleton 1993/94, ottava edizione della manifestazione organizzata dalla Federazione Internazionale di Bob e Skeleton, è iniziata il 5 dicembre 1993 a Winterberg, in Germania, e si è conclusa il 28 gennaio 1994 a Sankt Moritz, in Svizzera. Furono disputate quattro gare nel singolo uomini in altrettante differenti località. Al termine de...

 

« Atlantique » redirige ici. Pour les autres significations, voir Atlantique (homonymie). Océan Atlantique Carte de l'océan Atlantique et de ses mers bordières. Géographie physique Type Océan Coordonnées 0° 00′ nord, 23° 30′ ouest Superficie 82 400 000 km2 Largeur · Maximale 6 757 km · Minimale 2 840 km Profondeur · Moyenne 3 332 m · Maximale 8 376 m Volume 323 600 000 km3 Sa...

City in EgyptRhacotis ῬακῶτιςCityCountryEgypt Ancient city in Egypt r-ꜥ-qd(y)t (Alexandria)[1] in hieroglyphs Rhacotis (Egyptian: r-ꜥ-qd(y)t, Greek Ῥακῶτις; also romanized as Rhakotis) was the name for a city on the northern coast of Egypt at the site of Alexandria. Classical sources from the Greco-Roman era in both Ancient Greek and the Egyptian language suggest Rhacotis as an older name for Alexandria before the arrival of Alexander the Great. Rhacotis was loca...

 

Australian rules football club This article is about the Australian rules football club. For the association football (soccer) club, see Melbourne City FC. Australian rules football club Melbourne Football ClubNamesFull nameMelbourne Football Club Limited[1]Nickname(s)AFL: Demons, DeesIndigenous rounds: NarrmFormer nickname(s)Redlegs, Fuchsias (prior to 1933) 2023 seasonAfter finals6thHome-and-away season4thLeading goalkickerBayley Fritsch (38 goals)Club detailsFounded1858; 16...