Hilbert's basis theorem

In mathematics Hilbert's basis theorem asserts that every ideal of a polynomial ring over a field has a finite generating set (a finite basis in Hilbert's terminology).

In modern algebra, rings whose ideals have this property are called Noetherian rings. Every field, and the ring of integers are Noetherian rings. So, the theorem can be generalized and restated as: every polynomial ring over a Noetherian ring is also Noetherian.

The theorem was stated and proved by David Hilbert in 1890 in his seminal article on invariant theory[1], where he solved several problems on invariants. In this article, he proved also two other fundamental theorems on polynomials, the Nullstellensatz (zero-locus theorem) and the syzygy theorem (theorem on relations). These three theorems were the starting point of the interpretation of algebraic geometry in terms of commutative algebra. In particular, the basis theorem implies that every algebraic set is the intersection of a finite number of hypersurfaces.

Another aspect of this article had a great impact on mathematics of the 20th century; this is the systematic use of non-constructive methods. For example, the basis theorem asserts that every ideal has a finite generator set, but the original proof does not provide any way to compute it for a specific ideal. This approach was so astonishing for mathematicians of that time that the first version of the article was rejected by Paul Gordan, the greatest specialist of invariants of that time, with the comment "This is not mathematics. This is theology."[2] Later, he recognized "I have convinced myself that even theology has its merits."[3]

Statement

If is a ring, let denote the ring of polynomials in the indeterminate over . Hilbert proved that if is "not too large", in the sense that if is Noetherian, the same must be true for . Formally,

Hilbert's Basis Theorem. If is a Noetherian ring, then is a Noetherian ring.[4]

Corollary. If is a Noetherian ring, then is a Noetherian ring.

Hilbert proved the theorem (for the special case of multivariate polynomials over a field) in the course of his proof of finite generation of rings of invariants.[1] The theorem is interpreted in algebraic geometry as follows: every algebraic set is the set of the common zeros of finitely many polynomials.

Hilbert's proof is highly non-constructive: it proceeds by induction on the number of variables, and, at each induction step uses the non-constructive proof for one variable less. Introduced more than eighty years later, Gröbner bases allow a direct proof that is as constructive as possible: Gröbner bases produce an algorithm for testing whether a polynomial belong to the ideal generated by other polynomials. So, given an infinite sequence of polynomials, one can construct algorithmically the list of those polynomials that do not belong to the ideal generated by the preceding ones. Gröbner basis theory implies that this list is necessarily finite, and is thus a finite basis of the ideal. However, for deciding whether the list is complete, one must consider every element of the infinite sequence, which cannot be done in the finite time allowed to an algorithm.

Proof

Theorem. If is a left (resp. right) Noetherian ring, then the polynomial ring is also a left (resp. right) Noetherian ring.

Remark. We will give two proofs, in both only the "left" case is considered; the proof for the right case is similar.

First proof

Suppose is a non-finitely generated left ideal. Then by recursion (using the axiom of dependent choice) there is a sequence of polynomials such that if is the left ideal generated by then is of minimal degree. By construction, is a non-decreasing sequence of natural numbers. Let be the leading coefficient of and let be the left ideal in generated by . Since is Noetherian the chain of ideals

must terminate. Thus for some integer . So in particular,

Now consider

whose leading term is equal to that of ; moreover, . However, , which means that has degree less than , contradicting the minimality.

Second proof

Let be a left ideal. Let be the set of leading coefficients of members of . This is obviously a left ideal over , and so is finitely generated by the leading coefficients of finitely many members of ; say . Let be the maximum of the set , and let be the set of leading coefficients of members of , whose degree is . As before, the are left ideals over , and so are finitely generated by the leading coefficients of finitely many members of , say

with degrees . Now let be the left ideal generated by:

We have and claim also . Suppose for the sake of contradiction this is not so. Then let be of minimal degree, and denote its leading coefficient by .

Case 1: . Regardless of this condition, we have , so is a left linear combination
of the coefficients of the . Consider
which has the same leading term as ; moreover while . Therefore and , which contradicts minimality.
Case 2: . Then so is a left linear combination
of the leading coefficients of the . Considering
we yield a similar contradiction as in Case 1.

Thus our claim holds, and which is finitely generated.

Note that the only reason we had to split into two cases was to ensure that the powers of multiplying the factors were non-negative in the constructions.

Applications

Let be a Noetherian commutative ring. Hilbert's basis theorem has some immediate corollaries.

  1. By induction we see that will also be Noetherian.
  2. Since any affine variety over (i.e. a locus-set of a collection of polynomials) may be written as the locus of an ideal and further as the locus of its generators, it follows that every affine variety is the locus of finitely many polynomials — i.e. the intersection of finitely many hypersurfaces.
  3. If is a finitely-generated -algebra, then we know that , where is an ideal. The basis theorem implies that must be finitely generated, say , i.e. is finitely presented.

Formal proofs

Formal proofs of Hilbert's basis theorem have been verified through the Mizar project (see HILBASIS file) and Lean (see ring_theory.polynomial).

References

  1. ^ a b Hilbert, David (1890). "Über die Theorie der algebraischen Formen". Mathematische Annalen. 36 (4): 473–534. doi:10.1007/BF01208503. ISSN 0025-5831. S2CID 179177713.
  2. ^ Reid 1996, p. 34.
  3. ^ Reid 1996, p. 37.
  4. ^ Roman 2008, p. 136 §5 Theorem 5.9

Further reading

Read other articles:

Searah jarum jam Berlawanan arah jarum jam Rotasi dua dimensi dapat terjadi dalam dua arah yang memungkinkan. Gerakan Searah jarum jam (Inggris: Clockwisecode: en is deprecated , disingkat sebagai CW) adalah gerakan berputar dengan arah yang sama dengan jarum jam: dari atas ke kanan, lalu ke bawah dan kemudian ke kiri, dan kembali ke atas. Gerak rotasi atau berputar dengan arah sebaliknya disebut berlawanan arah jarum jam (Bahasa Inggris Amerika: counterclockwise, disingkat CCW; Bahasa Inggri...

 

Kajian lanskap hitam-putih pensil buatan Samuel Palmer, Eclogue IV: Thy Very Cradle Quickens (1876). Eclogue 4, juga dikenal sebagai Eclogue Keempat, adalah nama puisi Latin karya penyair Romawi Virgil. bagian dari karya besar pertamanya, Eclogues, karya tersebut ditulis sekitar tahun 42 SM, pada masa stabilitas temporer setelah Traktat Brundisium; karya tersebut kemudian diterbitkan pada dan sekitar tahun 39–38 SM. Daftar pustaka Arnold, Bruce (Winter 1994). The Literary Experience of Verg...

 

Asafa Powell pada Rio 2016. Asafa Powell (lahir 23 November 1982) adalah seorang sprinter Jamaika dan mantan pemegang rekor dunia lari 100m putra. Tinggi badannya ialah 188 cm. Sebagai salah satu favorit untuk lomba lari 100m pada Olimpiade Athena 2004 (setelah menciptakan rekor baru dengan 9 kali mencetak waktu di bawah 10 detik dalam semusim), Powell hanya berhasil finis pada urutan kelima dalam final di Athena. Pada 14 Juni 2005, Powell menciptakan rekor dunia baru, juga di Athena, de...

غليبيتشيفو الإحداثيات 60°27′14″N 28°43′09″E / 60.453888888889°N 28.719166666667°E / 60.453888888889; 28.719166666667  تقسيم إداري  البلد روسيا[2][1]  معلومات أخرى 188917  رمز الهاتف 81378  رمز جيونيمز 561251  تعديل مصدري - تعديل   غليبيتشيفو (بالروسية: Глебычево) هي مدينة في مقاطعة...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Berikut ini adalah daftar pesantren di Kabupaten Asahan, baik Salafiyah, Ashriyah, atau kombinasi[1]: No Nama Pondok Pesantren Alamat Kecamatan Tipe[2] 1 Pondok Pesantren Darul Istiqomah, Bandar Pasir Mandoge Jl. Pulo Bauk Km 10 Bandar ...

 

Mads MikkelsenMikkelsen di Festival Film Cannes 2013LahirMads Dittmann Mikkelsen22 November 1965 (umur 58)Kopenhagen, DenmarkPekerjaanAktorTahun aktif1996–sekarangSuami/istriHanne Jacobsen ​(m. 2000)​Anak2PenghargaanKsatria Ordo Seni Rupa dan Kesusastraan Mads Dittmann Mikkelsen,[1] R (bahasa Denmark: [ˈmæs ˈmeɡl̩sn̩] ( simak); lahir 22 November 1965) adalah aktor asal Denmark. Awalnya seorang pesenam dan penari, ia menjadi ter...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды...

 

1798 Delaware gubernatorial election ← 1795 October 2, 1798 1801 →   Nominee Richard Bassett David Hall Party Federalist Democratic-Republican Popular vote 2,490 2,068 Percentage 52.50% 43.60% Governor before election Daniel Rogers (acting) Federalist Elected Governor Richard Bassett Federalist Elections in Delaware Federal government Presidential elections 1788-89 1792 1796 1800 1804 1808 1812 1816 1820 1824 1828 1832 1836 1840 1844 1848 1852 1856 1860 1864 1...

 

American politician For his son, the North Dakota state senator, see George B. Sinner. George Sinner29th Governor of North DakotaIn officeJanuary 1, 1985 – December 15, 1992LieutenantRuth MeiersLloyd OmdahlPreceded byAllen I. OlsonSucceeded byEd SchaferMember of the North Dakota SenateIn office1962–1966 Personal detailsBornGeorge Albert Sinner(1928-05-29)May 29, 1928Fargo, North Dakota, U.S.DiedMarch 9, 2018(2018-03-09) (aged 89)Fargo, North Dakota, U.S.Political partyDemocr...

For the opera, see Le magnifique (opera). 1973 French filmLe MagnifiqueDirected byPhilippe de BrocaWritten byPhilippe de Broca Francis Veber Jean-Paul RappeneauProduced byGeorges Dancigers Alexandre MnouchkineStarringJean-Paul BelmondoJacqueline BissetCinematographyRené MathelinMusic byClaude BollingDistributed byCine IIIRelease date 29 November 1973 (1973-11-29)[1] Running time95 minutesCountriesFranceItaly[1]LanguageFrenchBox office2,895,800 admissions (Franc...

 

Radio station at Brandeis University in Waltham, Massachusetts This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: WBRS – news · newspapers · books · scholar · JSTOR (August 2008) (Learn how and when to remove this message) WBRSWaltham, MassachusettsUnited StatesFrequency100.1 MHzBrandingWBRS 100.1 FMProgramming...

 

Le tre spartizioni della Polonia Con spartizioni della Polonia (in polacco Rozbiór Polski o Rozbiory Polski; in lituano Padalijimas) si fa riferimento alle divisioni della Confederazione polacco-lituana alla fine del XVIII secolo avvenute in tre differenti occasioni (1772, 1793 e 1795) ad opera delle potenze confinanti rappresentate dall'Impero russo, dal Regno di Prussia e della Monarchia asburgica.[1] In tutti questi casi ci furono assicurazioni riguardo al riconoscimento...

Mountain range in Georgia, U.S. View of the Cohutta Mountains The Cohutta Mountains is a mountain range in Georgia, U.S. Cohutta is a name derived from the Cherokee language meaning a shed roof supported on poles.[1] The range includes: Big Frog Mountain Fort Mountain (Murray County, Georgia) Grassy Mountain (Georgia), in Murray County near Lake Conasauga (34°51′46″N 84°40′19″W / 34.862834°N 84.671888°W / 34.862834; -84.671888) References ^ The Name...

 

Television show filmed in Vancouver Human TargetGenre Action Drama Spy fiction Based onChristopher Chanceby Len WeinCarmine InfantinoDeveloped byJonathan E. SteinbergStarring Mark Valley Chi McBride Jackie Earle Haley Indira Varma Janet Montgomery Theme music composer Bear McCreary (season 1) Tim Jones (season 2) Opening themeTheme from Human TargetComposers Bear McCreary (season 1) Tim Jones (season 2) Country of originUnited StatesOriginal languageEnglishNo. of seasons2No. of episodes25Prod...

 

Prime Minister of Greece (2012–2015) Antonis SamarasΑντώνης ΣαμαράςSamaras in 2014Prime Minister of GreeceIn office20 June 2012 – 26 January 2015PresidentKarolos PapouliasDeputyEvangelos Venizelos[a]Preceded byPanagiotis PikrammenosSucceeded byAlexis TsiprasLeader of the OppositionIn office26 January 2015 – 5 July 2015Prime MinisterAlexis TsiprasPreceded byAlexis TsiprasSucceeded byVangelis MeimarakisIn office30 November 2009 – 20 June ...

Rise of the Planet of the ApesPoster promosiSutradaraRupert WyattProduserPeter CherninDylan ClarkRick JaffaAmanda SilverDitulis olehRick JaffaAmanda SilverBerdasarkanPremise suggested by La planète des singesoleh Pierre BoullePemeranJames FrancoFreida PintoJohn LithgowBrian CoxTom FeltonAndy SerkisPenata musikPatrick DoyleSinematograferAndrew LesniePenyuntingConrad BuffMark GoldblattPerusahaanproduksi20th Century FoxDune EntertainmentChernin EntertainmentDistributor20th Century FoxTang...

 

Casorate Sempione komune di Italia Tempat Negara berdaulatItaliaDaerah di ItaliaLombardyProvinsi di ItaliaProvinsi Varese NegaraItalia Ibu kotaCasorate Sempione PendudukTotal5.637  (2023 )GeografiLuas wilayah6,91 km² [convert: unit tak dikenal]Ketinggian285 m Berbatasan denganArsago Seprio Cardano al Campo Gallarate Somma Lombardo SejarahSanto pelindungHilarius dari Poitiers Informasi tambahanKode pos21011 Zona waktuUTC+1 UTC+2 Kode telepon0331 ID ISTAT012039 Kode kadaster ItaliaB9...

 

الاتحاد الرياضي المنستيري شعار الاتحاد الرياضي المنستيري الاسم الكامل الاتحاد الرياضي المنستيري(بالفرنسية:Union sportive monastirienne) الاسم المختصر USMO الألوان           أزرق ، أبيض تأسس عام 17 مارس 1923 (منذ 101 سنة) الملعب ملعب مصطفى بن جنات، المنستير(السعة: 20000 متفرج) ...

E. H. CalvertCalvert pada 1916LahirElisha Helm Calvert(1863-06-27)27 Juni 1863Alexandria, Virginia, Amerika SerikatMeninggal5 Oktober 1941(1941-10-05) (umur 78)Hollywood, California, Amerika SerikatPekerjaanPemeran, sutradaraTahun aktif1912–1939 Elisha Helm Calvert (27 Juni 1863 – 5 Oktober 1941) adalah seorang pemeran dan sutradara Amerika Serikat. Ia tampil dalam lebih dari 170 film, serta menyutradarai 60 film. Biografi Ia lahir di Alexandria, Virginia, dan men...

 

Ōyodo pada 1943 di Hiroshima. Tentang kelas Operator: Angkatan Laut Kekaisaran JepangDidahului oleh:Kapal penjelajah kelas-AganoDibangun:1941-1943Beroperasi:1943-1945Bertugas:1943-1945Rencana:2Selesai:1Hilang:1 Sejarah Kekaisaran Jepang Nama ŌyodoAsal nama Sungai ŌyodoDipesan 1939Dihadiahkan Arsenal Angkatan Laut KurePasang lunas 14 Februari 1941Diluncurkan 2 April 1942Mulai berlayar 28 Februari 1943[1]Dicoret 20 November 1945Pelabuhan daftar Basis Angkatan Laut KureNasib Ten...