High-entropy-alloy nanoparticles

Schematic of a high-entropy alloy nanoparticle with 5 types of atoms with different sizes.

High-entropy-alloy nanoparticles (HEA-NPs) are nanoparticles having five or more elements alloyed in a single-phase solid solution structure.[1] HEA-NPs possess a wide range of compositional library, distinct alloy mixing structure, and nanoscale size effect, giving them huge potential in catalysis, energy, environmental, and biomedical applications.

Enabling synthesis

HEA-NPs are a structural analog to bulk high-entropy alloys (HEAs),[2][3] but synthesized at the nanoscale. The formation of HEAs typically requires high temperature for multi-element mixing; however, high temperature acts against nano-material synthesis due to high-temperature-induced structure aggregation and surface reconstruction.

In 2018, HEA-NPs were firstly synthesized by a carbothermal shock synthesis.[1] (The material and technology are patented.[4][5]) The carbothermal shock employs a rapid high-temperature heating (e.g. 2000 K, in 55 ms) to enable the non-equilibrium synthesis of HEA-NPs with uniform size and homogeneous mixing despite containing immiscible combinations. Although rapid quenching is desired to maintain the solid-solution state, too fast cooling rate can hinder structural ordering. Therefore, the cooling rate should be chosen carefully based on the temperature-time-transformation diagram.[6]

Another guide that can be used for the synthesis is the Ellingham diagram. Elements at the top of the diagram are easily reduced and tend to form HEA-NPs, while elements at the bottom of the diagram tend to form high-entropy oxide NPs.[6]

Later, other similar non-equilibrium "shock" methods were also introduced to synthesize HEA-NPs and other types of high entropy nanostructures.[7][8][9] Recently, a low temperature synthesis through simultaneous multi-cation exchange (below 900 K) has been demonstrated for high-entropy metal sulfide NPs, which may be applied to metal selenides, tellurides, phosphides, and halides as well.[10]

In 2024 a study showed that induction plasma can be used as a one-step method that enables the continuous synthesis of HEA-NPs directly from elemental metal powders via in-flight alloying.[11]

Structural analysis

Due to the random distribution of elements in HEA-NPs, in addition to conventional characterization methods, other methods with higher resolution are needed for their structural analysis. To analyze the random mixing of multiple elements, atomic electron tomography can be used, which provides positional precision of 21 pm and identification of atoms by periods.[12] Furthermore, X-ray absorption spectroscopy can give information on local coordination environments, while extended X-ray absorption fine structure can be used to get coordination numbers and bond distances.[13] Combined with hard X-ray photoelectron spectroscopy or X-ray absorption near-edge structure, these analyses can be used to explore structure–property relationships in HEA-NPs.[14] In addition, due to the immense number of possibilities of compositions and surfaces (i.e., terrace, edge, and corner) available for HEA-NPs, simulations such as density functional theory calculations are also popularly used for their analysis.[15]

Properties and applications

HEA-NPs have a large compositional library, which enables tunability in chemical composition, structure, and associated properties. In HEA-NPs, the same type of atoms can have different local density of states because their neighboring atom compositions can be different.[14] Such variations in local environment lead to diverse and tunable adsorption energy levels, which can be beneficial to satisfy the Sabatier principle especially for complex reactions.[6]

In addition, owing to the high entropy structure, HEA-NPs typically show improved structural stability. One suggested mechanism for the enhanced structural stability is through prevention of phase separation due to lattice distortions from different sized elements acting as diffusion barriers.[16] With the above merits, HEA-NPs have been used as high-performance catalysts for both thermochemical and electrochemical reactions, such as ammonia oxidation, decomposition, and water splitting.[1][17][18][19] High throughput and data mining approaches are being implemented toward accelerated materials discovery in the multi-dimensional space of HEA-NPs.[20][21]

References

  1. ^ a b c Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei (2018-03-30). "Carbothermal shock synthesis of high-entropy-alloy nanoparticles". Science. 359 (6383): 1489–1494. Bibcode:2018Sci...359.1489Y. doi:10.1126/science.aan5412. ISSN 0036-8075. PMID 29599236.
  2. ^ Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. (2004). "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes". Advanced Engineering Materials. 6 (5): 299–303. doi:10.1002/adem.200300567. ISSN 1527-2648. S2CID 137380231.
  3. ^ Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. (2004-07-01). "Microstructural development in equiatomic multicomponent alloys". Materials Science and Engineering: A. 375–377: 213–218. doi:10.1016/j.msea.2003.10.257. ISSN 0921-5093.
  4. ^ US 2019161840, Yao, Yonggang & Hu, Liangbing, "Thermal shock synthesis of multielement nanoparticles", published 2019-05-30, assigned to University of Maryland 
  5. ^ US 2018369771, Hu, Liangbing; Chen, Yanan & Yao, Yonggang, "Nanoparticles and Systems and Methods for Synthesizing Nanoparticles Through Thermal Shock", published 2018-12-27, assigned to University of Maryland 
  6. ^ a b c Yao, Yonggang; Dong, Qi; Brozena, Alexandra; Luo, Jian; Miao, Jianwei; Chi, Miaofang; Wang, Chao; Kevrekidis, Ioannis G.; Ren, Zhiyong Jason; Greeley, Jeffrey; Wang, Guofeng; Anapolsky, Abraham; Hu, Liangbing (2022-04-08). "High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery". Science. 376 (6589): eabn3103. doi:10.1126/science.abn3103. ISSN 0036-8075. PMID 35389801. S2CID 248024069.
  7. ^ Yang, Yong; Song, Boao; Ke, Xiang; Xu, Feiyu; Bozhilov, Krassimir N.; Hu, Liangbing; Shahbazian-Yassar, Reza; Zachariah, Michael R. (2020-03-03). "Aerosol Synthesis of High Entropy Alloy Nanoparticles". Langmuir. 36 (8): 1985–1992. doi:10.1021/acs.langmuir.9b03392. ISSN 0743-7463. PMID 32045255. S2CID 211087047.
  8. ^ Glasscott, Matthew W.; Pendergast, Andrew D.; Goines, Sondrica; Bishop, Anthony R.; Hoang, Andy T.; Renault, Christophe; Dick, Jeffrey E. (2019-06-14). "Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis". Nature Communications. 10 (1): 2650. Bibcode:2019NatCo..10.2650G. doi:10.1038/s41467-019-10303-z. ISSN 2041-1723. PMC 6570760. PMID 31201304.
  9. ^ Chen, Hao; Lin, Wenwen; Zhang, Zihao; Jie, Kecheng; Mullins, David R.; Sang, Xiahan; Yang, Shi-Ze; Jafta, Charl J.; Bridges, Craig A.; Hu, Xiaobing; Unocic, Raymond R. (2019-07-01). "Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization". ACS Materials Letters. 1 (1): 83–88. doi:10.1021/acsmaterialslett.9b00064. S2CID 181600242.
  10. ^ McCormick, Connor R.; Schaak, Raymond E. (2021-01-20). "Simultaneous Multication Exchange Pathway to High-Entropy Metal Sulfide Nanoparticles". Journal of the American Chemical Society. 143 (2): 1017–1023. doi:10.1021/jacs.0c11384. ISSN 0002-7863. PMID 33405919. S2CID 230810629.
  11. ^ Kim, Keun Su; Couillard, Martin; Tang, Ziqi; Shin, Homin; Poitras, Daniel; Cheng, Changjun; Naboka, Olga; Ruth, Dean; Plunkett, Mark; Chen, Lixin; Gaburici, Liliana; Lacelle, Thomas; Nganbe, Michel; Zou, Yu (2024-02-16). "Continuous synthesis of high-entropy alloy nanoparticles by in-flight alloying of elemental metals". Nature Communications. 15 (1): 1450. Bibcode:2024NatCo..15.1450K. doi:10.1038/s41467-024-45731-z. ISSN 2041-1723. PMC 10873330. PMID 38365786.
  12. ^ Yang, Yao; Zhou, Jihan; Zhu, Fan; Yuan, Yakun; Chang, Dillan J.; Kim, Dennis S.; Pham, Minh; Rana, Arjun; Tian, Xuezeng; Yao, Yonggang; Osher, Stanley J.; Schmid, Andreas K.; Hu, Liangbing; Ercius, Peter; Miao, Jianwei (April 2021). "Determining the three-dimensional atomic structure of an amorphous solid". Nature. 592 (7852): 60–64. arXiv:2004.02266. Bibcode:2021Natur.592...60Y. doi:10.1038/s41586-021-03354-0. ISSN 1476-4687. PMID 33790443. S2CID 214802235.
  13. ^ Morris, David; Yao, Yonggang; Finfrock, Y. Zou; Huang, Zhennan; Shahbazian-Yassar, Reza; Hu, Liangbing; Zhang, Peng (2021-11-17). "Composition-dependent structure and properties of 5- and 15-element high-entropy alloy nanoparticles". Cell Reports Physical Science. 2 (11): 100641. Bibcode:2021CRPS....200641M. doi:10.1016/j.xcrp.2021.100641. ISSN 2666-3864. S2CID 243775798.
  14. ^ a b Wu, Dongshuang; Kusada, Kohei; Nanba, Yusuke; Koyama, Michihisa; Yamamoto, Tomokazu; Toriyama, Takaaki; Matsumura, Syo; Seo, Okkyun; Gueye, Ibrahima; Kim, Jaemyung; Rosantha Kumara, Loku Singgapulige; Sakata, Osami; Kawaguchi, Shogo; Kubota, Yoshiki; Kitagawa, Hiroshi (2022-03-02). "Noble-Metal High-Entropy-Alloy Nanoparticles: Atomic-Level Insight into the Electronic Structure". Journal of the American Chemical Society. 144 (8): 3365–3369. doi:10.1021/jacs.1c13616. ISSN 0002-7863. PMID 35166532.
  15. ^ Lu, Zhuole; Chen, Zhi Wen; Singh, Chandra Veer (2020-10-07). "Neural Network-Assisted Development of High-Entropy Alloy Catalysts: Decoupling Ligand and Coordination Effects". Matter. 3 (4): 1318–1333. doi:10.1016/j.matt.2020.07.029. ISSN 2590-2393.
  16. ^ Kube, Sebastian A.; Schroers, Jan (2020-09-01). "Metastability in high entropy alloys". Scripta Materialia. 186: 392–400. doi:10.1016/j.scriptamat.2020.05.049. ISSN 1359-6462. S2CID 225335588.
  17. ^ Xie, Pengfei; Yao, Yonggang; Huang, Zhennan; Liu, Zhenyu; Zhang, Junlei; Li, Tangyuan; Wang, Guofeng; Shahbazian-Yassar, Reza; Hu, Liangbing; Wang, Chao (2019-09-05). "Highly efficient decomposition of ammonia using high-entropy alloy catalysts". Nature Communications. 10 (1): 4011. Bibcode:2019NatCo..10.4011X. doi:10.1038/s41467-019-11848-9. ISSN 2041-1723. PMC 6728353. PMID 31488814.
  18. ^ Yang, Chunpeng; Yao, Yonggang; He, Shuaiming; Xie, Hua; Hitz, Emily; Hu, Liangbing (2017). "Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode". Advanced Materials. 29 (38): 1702714. Bibcode:2017AdM....2902714Y. doi:10.1002/adma.201702714. ISSN 1521-4095. PMID 28833607. S2CID 205281575.
  19. ^ Gao, Shaojie; Hao, Shaoyun; Huang, Zhennan; Yuan, Yifei; Han, Song; Lei, Lecheng; Zhang, Xingwang; Shahbazian-Yassar, Reza; Lu, Jun (2020-04-24). "Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis". Nature Communications. 11 (1): 2016. Bibcode:2020NatCo..11.2016G. doi:10.1038/s41467-020-15934-1. ISSN 2041-1723. PMC 7181682. PMID 32332743.
  20. ^ Yao, Yonggang; Liu, Zhenyu; Xie, Pengfei; Huang, Zhennan; Li, Tangyuan; Morris, David; Finfrock, Zou; Zhou, Jihan; Jiao, Miaolun; Gao, Jinlong; Mao, Yimin (2020). "Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts". Science Advances. 6 (11): eaaz0510. Bibcode:2020SciA....6..510Y. doi:10.1126/sciadv.aaz0510. ISSN 2375-2548. PMC 7069714. PMID 32201728.
  21. ^ Yao, Yonggang; Huang, Zhennan; Li, Tangyuan; Wang, Hang; Liu, Yifan; Stein, Helge S.; Mao, Yimin; Gao, Jinlong; Jiao, Miaolun; Dong, Qi; Dai, Jiaqi (2020-03-24). "High-throughput, combinatorial synthesis of multimetallic nanoclusters". Proceedings of the National Academy of Sciences. 117 (12): 6316–6322. Bibcode:2020PNAS..117.6316Y. doi:10.1073/pnas.1903721117. ISSN 0027-8424. PMC 7104385. PMID 32156723.

See also